反射模式(Reflection pattern)
以下是该模式的工作流程介绍:
- 用户输入查询:用户通过界面或API向agent发送一个查询请求。
- LLM生成初始输出:大型语言模型(LLM)接收用户的查询,并生成一个初步的响应。
- 用户反馈:用户对初步的响应进行评估并给出反馈。
- LLM反射输出:基于用户的反馈,LLM对初步的响应进行反思,即重新评估和调整其生成的输出。
- 迭代过程:这一过程可能需要多次迭代,直到用户对最终的响应感到满意为止。
- 返回给用户:最终的响应被返回给用户,用户可以通过界面或API接收到结果。
这种模式通常用于提高大型语言模型的交互性和准确性,通过用户反馈不断优化模型的输出。
工具使用模式(Tool use pattern)
以下是该模式的工作流程介绍:
- 用户输入查询:用户通过界面或API向agent发送一个查询请求。
- LLM处理查询:agent内部的大型语言模型(LLM)接收用户的查询,并对其进行处理。在这个过程中,LLM可能需要调用外部工具或API来获取更准确的信息。
- 调用工具和API:如果查询需要额外的信息或数据,LLM会调用存储在vector数据库中的工具和API来获取这些信息。
- 生成响应:LLM根据从工具和API获取的信息生成一个响应,这个响应可能是文本、表格或其他格式的数据。
- 返回给用户:最后,生成的响应被返回给用户,用户可以通过界面或API接收到结果。
这种模式通常用于增强大型语言模型的能力,使其能够访问外部资源以提供更全面和准确的回答。
ReAct模式(ReAct Pattern)
以下是该模式的工作流程介绍:
- 用户(User):用户向系统提出查询(Query),例如需要完成的任务或请求。
- LLM(Reason):接收到用户的查询后,推理型语言模型(LLM - Reason)会分析查询并生成相应的策略或计划。
- 工具(Tools):根据生成的策略或计划,系统调用相应的工具来执行具体的操作。
- 环境(Environment):工具执行操作后,将结果反馈给环境。
- LLM(Generate):环境返回的结果被反馈给生成型语言模型(LLM - Generate),生成型语言模型根据结果生成最终的响应。
- 响应(Response):生成型语言模型生成的响应返回给用户。
这种模式通过结合推理型语言模型和生成型语言模型,实现了从用户查询到最终响应的完整闭环。推理型语言模型负责策略生成,生成型语言模型负责结果解释和响应生成。
规划模式(Planning Pattern)
以下是该模式的工作流程介绍:
- 用户(User):用户向系统提出查询(Query),例如需要完成的任务或请求。
- 计划器(Planner):接收到用户的查询后,计划器会分析并生成一系列任务(Generated tasks)。这些任务可能是具体的执行步骤或子任务。
- 生成的任务:计划器生成的任务会被传递给执行者(ReAct Agent)。
- 执行者(ReAct Agent):执行者根据生成的任务执行单个任务,并将结果返回给计划器。
- 结果反馈:执行者执行完一个任务后,会将结果反馈给计划器。如果所有任务都已完成,则计划器会确认任务完成(Finished?)。
- 响应(Response):计划器根据任务完成情况和结果,生成最终的响应(Response),返回给用户。
这个模式确保了任务的有序执行和结果的及时反馈,从而实现用户需求的有效处理。
多智能体模式(Multi-agent pattern)
以下是该模式的工作流程介绍:
- 用户(User):用户向系统提出查询(Query),例如需要完成的任务或请求。
- 项目经理代理(PM agent):接收到用户的查询后,项目经理代理(PM agent)会分析并分配任务给其他代理。
- DevOps代理(DevOps agent):项目经理代理将任务分配给DevOps代理(DevOps agent)。
- 技术负责人代理(Tech lead agent):DevOps代理将任务进一步分配给技术负责人代理(Tech lead agent)。
- 软件开发工程师代理(SDE agent):技术负责人代理将任务分配给软件开发工程师代理(SDE agent)。
- 执行任务:每个代理根据分配的任务执行相应的操作,并将结果反馈给上一级代理。
- 结果反馈:最终,所有代理完成任务后,将结果反馈给项目经理代理。
- 综合响应:项目经理代理综合所有代理的结果,生成最终的响应(Response),返回给用户。
这种模式通过多个代理协同工作,可以更高效地处理复杂任务,确保任务的有序执行和结果的及时反馈。
最后的最后
感谢你们的阅读和喜欢,作为一位在一线互联网行业奋斗多年的老兵,我深知在这个瞬息万变的技术领域中,持续学习和进步的重要性。
为了帮助更多热爱技术、渴望成长的朋友,我特别整理了一份涵盖大模型领域的宝贵资料集。
这些资料不仅是我多年积累的心血结晶,也是我在行业一线实战经验的总结。
这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。如果你愿意花时间沉下心来学习,相信它们一定能为你提供实质性的帮助。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】

大模型知识脑图
为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
经典书籍阅读
阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。
实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
面试资料
我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下
640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
