前言
你是否也有这样的桌面?为了方便找材料,全部放到了桌面,最后结果就是“用起一时爽,找起火葬场”。
你是否也是盘即个人电脑磁使再怎么不够用,也舍不得删除几年前做的运维方案、架构方案、设计方案文档?最后即使文档都保存了,存云盘了,到用的时候依旧发现找不到,找的也不是想要的。
**你需要的是通过大模型管理你的文件/信息库!
**
|大模型知识库is all you need
现在不用再担心了找不到材料文档了**,GitHub开源了一款可离线,支持检索增强生成(RAG)大模型的知识库项目**。虽然开源时间不长,但是势头很猛,已经斩获25K Star。具备以下特点:
|
总结下重点就是:
-
支持中文,可私有化部署,免费商用!
-
支持中文,可私有化部署,免费商用!
-
支持中文,可私有化部署,免费商用!
重要的事情说三遍
项目名称:Langchain-Chatchat
项目地址:https://github.com/chatchat-space/Langchain-Chatchat
📺 原理介绍视频(点击可看视频)
从文档处理角度来看,实现流程如下:
技术路线
Langchain 应用
基础React形式的Agent实现,包括调用计算器等
Langchain 自带的Agent实现和调用
智能调用不同的数据库和联网知识
本地数据接入
搜索引擎接入
Agent 实现
LLM 模型接入
支持通过调用 FastChat api 调用 llm
支持 ChatGLM API 等 LLM API 的接入
支持 Langchain 框架支持的LLM API 接入
Embedding 模型接入
支持调用 HuggingFace 中各开源 Emebdding 模型
支持 OpenAI Embedding API 等 Embedding API 的接入
支持 智谱AI、百度千帆、千问、MiniMax 等在线 Embedding API 的接入
基于 FastAPI 的 API 方式调用
Web UI
基于 Streamlit 的 Web UI
| 大模型知识库来袭 3种部署方式
Docker 部署
一行代码搞定,但是建议网速不好的同学不要尝试
docker run -d --gpus all -p 80:8501 registry.cn-beijing.aliyuncs.com/chatchat/chatchat:0.2.7
常规模式本地部署方案
1. 环境配置
# 首先,确信你的机器安装了 Python 3.8 - 3.10 版本
$ python --version
Python 3.8.13
# 如果低于这个版本,可使用conda安装环境
$ conda create -p /your_path/env_name python=3.8
# 激活环境
$ source activate /your_path/env_name
# 或,conda安装,不指定路径, 注意以下,都将/your_path/env_name替换为env_name
$ conda create -n env_name python=3.8
$ conda activate env_name # Activate the environment
# 更新py库
$ pip3 install --upgrade pip
# 关闭环境
$ source deactivate /your_path/env_name
# 删除环境
$ conda env remove -p /your_path/env_name
接着,开始安装项目的依赖
# 拉取仓库
$ git clone --recursive https://github.com/chatchat-space/Langchain-Chatchat.git
# 进入目录
$ cd Langchain-Chatchat
# 安装全部依赖
$ pip install -r requirements.txt
# 默认依赖包括基本运行环境(FAISS向量库)。以下是可选依赖:
- 如果要使用 milvus/pg_vector 等向量库,请将 requirements.txt 中相应依赖取消注释再安装。
- 如果要开启 OCR GPU 加速,请安装 rapidocr_paddle[gpu]
- 如果要使用在线 API 模型,请安装对用的 SDK
此外,为方便用户 API 与 webui 分离运行,可单独根据运行需求安装依赖包。
- 如果只需运行 API,可执行:
$ pip install -r requirements_api.txt`` ``# 默认依赖包括基本运行环境(FAISS向量库)。如果要使用 milvus/pg_vector 等向量库,请将 requirements.txt 中相应依赖取消注释再安装。
- 如果只需运行 WebUI,可执行:
$ pip install -r requirements_webui.txt
2. 模型下载
如需在本地或离线环境下运行本项目,需要首先将项目所需的模型下载至本地,通常开源 LLM 与 Embedding 模型可以从 HuggingFace 下载。
以本项目中默认使用的 LLM 模型 THUDM/ChatGLM3-6B 与 Embedding 模型 BAAI/bge-large-zh 为例:
下载模型需要先安装 Git LFS ,然后运行
$ git lfs install``$ git clone https://huggingface.co/THUDM/chatglm3-6b``$ git clone https://huggingface.co/BAAI/bge-large-zh
3. 初始化知识库和配置文件
按照下列方式初始化自己的知识库和简单的复制配置文件
$ python copy_config_example.py``$ python init_database.py --recreate-vs
4. 一键启动
按照以下命令启动项目
$ python startup.py -a
最轻模式本地部署方案
该模式的配置方式与常规模式相同,但无需安装 torch 等重依赖,通过在线API实现 LLM 和 Ebeddings 相关功能,适合没有显卡的电脑使用。
$ pip install -r requirements_lite.txt``$ python startup.py -a --lite
Demo示例
- Web UI 对话界面:
- Web UI 知识库管理页面:
最后的最后
感谢你们的阅读和喜欢,我收藏了很多技术干货,可以共享给喜欢我文章的朋友们,如果你肯花时间沉下心去学习,它们一定能帮到你。
因为这个行业不同于其他行业,知识体系实在是过于庞大,知识更新也非常快。作为一个普通人,无法全部学完,所以我们在提升技术的时候,首先需要明确一个目标,然后制定好完整的计划,同时找到好的学习方法,这样才能更快的提升自己。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】

大模型知识脑图
为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
经典书籍阅读
阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。
实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
面试资料
我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下
640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
