LLM大模型和数据标注

本文探讨了数据标注在大型语言模型如GPT-3.5中的关键作用,尽管大模型看似能自我学习,但实际应用中仍需标注来优化性能。文章介绍了数据标注的概念、应用场景,以及如何通过微调和自动化工具如ChatGPT进行预标注,强调了在模型训练和特定任务定制中的必要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对于那些不精通机器学习的人来说,像 ChatGPT 所基于的 GPT-3.5 这样的大型语言模型似乎是自给自足的。这些模型通过无监督或自我监督学习进行训练。简而言之,只需极少的人工干预,就能生成一个能像人类一样对话的模型。

这就引出了一个问题--数据标注对大型语言模型还有意义吗?

对于机器学习团队、项目经理和企业来说,忽视数据标注的重要性是不明智的。从表面上看,大型语言模型(LLM)似乎能够胜任任何任务,但现实却并非如此。

本文将探讨数据标注与大型语言模型之间的互利关系。

1. 什么是数据标注

在正式开始前我们先简单介绍下数据标注和常用场景

数据标注是对数据中的特定元素进行识别、描述和分类,以训练机器学习模型的过程。标注后的数据将用于处理、预测基础模型或者对真实生活数据进行响应。它有助于模型或神经网络学习并做出决策,从而产生所需的结果。

例如,OCR系统需要识别原始数据中的个人身份信息。为此,标注人员会在训练样本上标注姓名、身份证和联系方式。然后,机器学习工程师用数据集训练模型,以实现OCR实体识别,并从存储的文档中提取个人详细信息。

数据标注看似简单,但各种参数可能会影响标注结果和模型性能。因此,ML 团队使用数据标注软件来支持他们创建准确、高性能的模型。

2. 数据标注常用使用场景

早在LLM或者生成式人工智能出现之前,数据标注就已经在机器学习模型的训练中发挥了关键作用。

  • ML 工程师对数据进行标注,以支持命名实体识别、翻译和情感分析等自然语言处理 (NLP) 任务。
  • 在训练图像识别系统以检测和分类物体时,标注也很有帮助。
  • 医疗保健系统利用标注数据训练神经网络,以便从成像数据中诊断疾病。
  • 金融业利用各种数据集训练模型
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值