前言
虽然Llama-3大模型发布以后,中文适配模型也出了一大堆,但效果都不尽人意,参差不齐。近期,Chinese-LLaMA-Alpaca-3项目终于发布了,我也快速的跟进体验了一下。这个项目内容规范,提供了训练和推理脚本,也提供了很多详细的文档,特别适合系统性了解大模型的朋友们。
这次我将以大家常用的ollama模型为例,介绍这个项目中的最新模型Llama-3-Chinese-8B-Instruct-v2的推理部署方法,并且进行效果体验。
项目地址:https://github.com/ymcui/Chinese-LLaMA-Alpaca-3
模型下载
本次Chinese-LLaMA-Alpaca-3项目提供了更多分流,例如Hugging Face、modelscope、wisemodel等。取消了百度云(没会员太慢了)和Google Drive链接。
除了常规的PyTorch版本(完整版、LoRA版)之外,项目还提供了GGUF量化版本(各个量化级别的都有),简直是业界良心。
比如说,本次要体验的Llama-3-Chinese-8B-Instruct-v2,我直接可以去下载Q8_0量化版本的。以下是相关链接,大家也可以访问项目主页获取其他版本模型的地址。
Hugging Face:https://huggingface.co/hfl/llama-3-chinese-8b-instruct-v2-gguf
ModelScope:https://modelscope.cn/models/ChineseAlpacaGroup/llama-3-chinese-8b-instruct-v2-gguf
ollama配置
接下来我就参照官方的ollama配置教程来介绍一下具体步骤。
官方wiki:ollama_zh · ymcui/Chinese-LLaMA-Alpaca-3 Wiki · GitHub
首先,去下载ollama的软件。这里要注意一定要安装0.1.33以上版本,现在最新的是0.1.37,我就安装这个版本了(我的系统是mac)。
第二步,需要创建一个Modelfile文件,用于配置ollama模型,定义了模型路径,聊天模板等信息,如下所示。
FROM /your-path-to-ggml/ggml-model-q8_0.gguf
TEMPLATE “”"{{ if .System }}<|start_header_id|>system<|end_header_id|>{{ .System }}<|eot_id|>{{ end }}{{ if .Prompt }}<|start_header_id|>user<|end_header_id|>
{{ .Prompt }}<|eot_id|>{{ end }}<|start_header_id|>assistant<|end_header_id|>
{{ .Response }}<|eot_id|>“”"
SYSTEM “”“You are a helpful assistant. 你是一个乐于助人的助手。”“”
PARAMETER temperature 0.2
PARAMETER num_keep 24
PARAMETER stop <|start_header_id|>
PARAMETER stop <|end_header_id|>
PARAMETER stop <|eot_id|>
第三步,创建模型实例,在命令行里键入以下内容创建模型。其中的-f就是指定上一步保存的Modelfile文件。
ollama create llama3-chinese-inst-v2 -f Modelfile
第四步,就可以启动相应模型了。
ollama run llama3-chinese-inst-v2
启动之后会出现">>>"提示符,就可以开始聊天了。
效果体验
接下来我用一些例子来测试一下部署是否成功,顺便看看新一代模型的效果如何。
问题1:我买了一个无线充电器来给手机充电,为什么还需要用线插电?
哈哈,这道题没能难倒他。
问题2:电脑坏了,应该去检查脑电图吗?
这道题也答对了。
**问题3:**给定两个单词(beginWord 和 endWord)和一个字典(单词列表 wordList),找出所有从 beginWord 到 endWord 的最短转换序列。每次转换只能改变一个字母,且中间的每个转换步骤必须是字典中的单词。要求返回所有从 beginWord 到 endWord 的最短路径。如果不存在这样的路径,返回空列表。
我们利用最新的GPT-4o对该题的回答进行了打分, 结果是10/10满分。
问题4:求过点 \( (1, 2) \) 且与直线 \( y = 3x + 4 \) 平行的直线方程。
以下是模型回复和GPT-4o打分,结果是10/10满分。
问题5:证明:如果 \( n \) 是一个正整数且 \( n \) 不是平方数,那么 \( \sqrt{n} \) 是无理数。
这道题,GPT-4o打出8/10分,整体基本正确,有一些小瑕疵。
总结
总的来说这一代Llama-3相比上一代还是提升了不少的。中文方面,Chinese-LLaMA-Alpaca-3项目也给出了效果不错的模型,并且提供了完整的部署体验流程。
如果大家想进一步在这些模型上进行指令精调,也可以参考项目中的代码和文档,以便在各自关注的任务上获得更好的效果。
AI大模型学习路线
如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!
扫描下方csdn官方合作二维码获取哦!
这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
100套AI大模型商业化落地方案
大模型全套视频教程
200本大模型PDF书籍
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
LLM面试题合集
大模型产品经理资源合集
大模型项目实战合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
