“ 金融交易任务面临整合多种模态数据的挑战,传统深度学习和强化学习方法存在需要大量训练数据、对数据编码简化以及决策过程缺乏可解释性等问题。基于大型语言模型(LLM)的智能体在处理多模态数据方面有显著进展。本文提出一种专为金融交易任务设计的多模态多智能体系统,采用基于LLM的专业智能体团队处理不同金融数据,包含一个反思模块分析历史交易信号及其结果,消融研究表明视觉反思模块对提升框架决策能力起关键作用。”
01
—
背景
金融市场复杂多变且数据多模态,给交易和市场走势预测等任务带来挑战。从基于规则的交易策略发展到深度学习和强化学习模型,但这些模型面临需要大量训练数据、简化金融数据类型、决策过程缺乏可解释性等挑战。例如将文本新闻数据融入模型时存在难以捕捉市场动态和有效解释信息的问题,处理历史价格数据和技术指标也面临诸多挑战。LLM发展为能够执行复杂多步决策任务的智能体,多智能体协作方法可提高模型可解释性,多模态LLM的出现进一步扩大了其能力,这些进展为金融分析带来新可能,而本文在现有LLM应用于股票预测研究基础上,构建了新的多模态多智能体框架用于金融交易任务。
02
—
问题定义
构建一个能够有效整合多种金融数据类型(如文本新闻报告、蜡烛图、交易信号图等),克服传统深度学习和强化学习模型在金融交易任务中的局限性(如大量训练数据需求、数据类型简化、决策缺乏可解释性),并能在较短训练时间内实现较好性能的金融交易框架,同时在框架中纳入风险管理功能。
03
—
方法
3.1 总结模块
作用:从输入文本生成简洁、信息丰富的摘要。
过程:对于特定股票s,根据前一天提供的新闻语料库,通过公式
生成摘要,其中C_{t - 1}{s}是前一天的新闻文本输入,agent_{summarizer}是生成摘要的语言模型智能体,X_{1}{s_{t - 1}}是生成的摘要,prompt_{summary}是用于摘要任务的指令。
3.2 技术分析模块
作用:从图像格式的历史价格数据和技术指标中提取见解。
过程:对于特定股票s,根据过去60天(截至t - 1天)的蜡烛图和技术指标图像,通过公式
生成技术分析,其中I_{t - 1}{s}是相关图像,agent_{technical}是具有视觉能力的语言模型智能体,X_{2}{s_{t - 1}}是生成的技术分析,prompt_{technical}是技术分析任务的指令。
3.3 反思模块
第一部分:
作用:分析过去交易的短期和中期表现。
过程:对于特定股票s,根据过去L天(截至t - 1天)的历史交易数据和表现,通过公式
生成反思结果,其中H_{t - L:t - 1}{s}是相关历史数据,agent_{reflection1}是生成见解的语言模型智能体,X_{3}{s_{t - 1}}是生成的反思结果,prompt_{reflection1}是相应指令。
第二部分:
作用:绘制过去的交易信号、生成图表并提供交易有效性的见解。
过程:对于特定股票s,根据过去30天(截至t - 1天)由绘图工具生成的交易信号视觉表示V_{t - 1}^{s},通过公式
生成反馈,其中agent_{reflection2}是分析视觉数据的语言模型智能体,X_{4}^{s_{t - 1}}是生成的反馈,prompt_{reflection2}是视觉分析任务的指令。
3.4 最终决策模块
作用:通过整合之前模块(新闻摘要、技术分析、反思结果等)的综合分析生成交易推荐。
过程:对于特定股票s,根据公式
进行决策,其中X_{1}^{s_{t - 1}}是总结模块的摘要,X_{2}^{s_{t - 1}}是技术分析模块的分析结果,X_{3}^{s_{t - 1}}和X_{4}^{s_{t - 1}}是反思模块的结果,P^{s_{t - 1}}是前一天由奖励智能体生成的投资组合状态,agent_{decision}是决策专用的语言模型智能体,prompt_{trading}是交易决策任务的指令。输出
包括推荐的操作hat{a}^{s_{t}} in {BUY,SELL,HOLD)、头寸规模hat{p}^{s_{t}} in [1,10](如果hat{a}^{s_{t}} = HOLD则为0)以及详细解释hat{e}_{trading}^{s_{t}}。
3.5 实现细节
多智能体系统利用LangGraph库实现有向图结构,每个节点对应一个专门的智能体。使用StateGraph类定义智能体之间的依赖关系并管理信息流。除最终决策智能体外,其他智能体使用GPT-4o-mini模型(温度设置为0.3),图表智能体和部分反思智能体利用模型的视觉能力。预测智能体使用o1-mini模型(温度设置为1)进行最终交易决策。此外,自定义AgentState类管理交易系统状态,封装所有相关交易信息。
04
—
实验
4.1 数据收集
研究对象:苹果(AAPL)、亚马逊(AMZN)和微软(MSFT)这三只主要科技股,时间跨度为2023年4月1日至2023年12月29日,其中4月1日至5月31日为两个月的训练期,6月1日至12月29日为七个月的测试期。
数据集构成:来自雅虎财经的新闻文章、每日蜡烛图、技术指标和反思数据。技术指标包括简单移动平均线(10日和50日)、相对强弱指数(14日周期)、布林带(20日周期,2个标准差)、交易量和移动平均收敛发散(MACD)。反思数据包括交易信号图像和过去交易活动的绩效数据。
4.2. 评估指标
Annual Rate of Return (ARR)(年化收益率):通过公式
计算,其中T是总交易天数,c是一年中的交易天数,P_{T}和P_{0}分别是最终和初始投资组合价值。
Sharpe Ratio (SR)(夏普比率):通过公式
计算,其中R_{p}是投资组合的平均收益,R_{f}是无风险利率,sigma_{p}是投资组合的波动率,夏普比率越高表示风险调整后的性能越好。
Maximum Drawdown (MDD)(最大回撤):通过公式
计算,其中P V_{t}是截至时间t的累计收益,PV_{peak,t}是截至时间t的最高累计收益。
4.3 基准模型
传统策略:
Buy-and-Hold (B&H)(买入并持有):一种被动的长期投资方法。
Moving Average Convergence Divergence (MACD)(移动平均收敛发散):利用趋势跟踪动量指标。
KDJ with RSI Filter(结合KDJ和RSI过滤器):组合振荡器以生成更精确的信号。
强化学习模型:
Proximal Policy Optimization (PPO)(近端策略优化):优化交易策略并通过约束更新确保稳定学习。
Deep Q-Network (DQN)(深度Q网络):使用深度神经网络学习最优动作 - 值函数以处理复杂市场状态。
基于LLM的基准模型:
FinAgent:一种多模态基础智能体,通过强化学习框架在一年的训练数据集上进行训练。
4.4 实验结果
比较性能:对于AAPL和MSFT,FinVision框架在年化收益率(ARR)和风险调整后的收益(夏普比率)方面优于市场买入并持有策略。例如,对于AAPL,框架的ARR为14.79%,夏普比率为1.20,而市场的ARR为13.56%,夏普比率为0.67;对于MSFT,框架的ARR为25.57%,夏普比率为1.41,而市场的ARR为22.27%,夏普比率为1.01。对于AMZN,框架的ARR为42.14%,略低于市场的43.57%,但显著提高了风险调整后的性能,夏普比率为1.72(市场为1.37),最大回撤为12.09%(市场为17.45%)。
在牛市中的表现:买入并持有策略对AMZN的有效性(ARR为43.57%)反映了测试期间这些科技股的强劲上升趋势。尽管如此,本框架在提高风险调整指标的同时保持有竞争力的回报,展示了其在风险管理方面的有效性。
相对于基于RL模型的优势:框架在所有评估股票上的表现均显著高于基于强化学习(RL)的模型(PPO和DQN)。例如,对于AAPL,框架的ARR和夏普比率远超PPO和DQN。框架始终保持正的夏普比率,而RL模型的夏普比率为负,表明框架具有更优的风险调整性能。
与FinAgent模型比较:本方法相对于FinAgent模型表现欠佳,这凸显了FinAgent大量训练数据的效率。但本框架在训练时间少得多的情况下仍表现良好,有进一步调整以提高性能的潜力。
反思机制的影响:消融研究表明反思组件对框架性能有显著贡献。比较完整框架和无反思版本,在所有股票上的性能指标都有显著提升,验证了这种自适应学习机制的有效性。
决策过程可见性:框架能够有效整合不同信息来源。例如2023年12月19日对苹果股票的决策示例中,技术指标显示看涨趋势时,预测智能体结合新闻信号和以前交易信号的反思得出更细致准确的决策。框架还能建议头寸规模,增加了交易策略的风险管理能力,通过提供明确的推荐理由,包括交易的投资组合具体百分比,实现更精确的风险暴露控制。
05
—
结论
本文提出的多模态多智能体金融交易框架相对于传统基于规则和强化学习模型表现更优,实现了风险控制的投资方法,在获得有竞争力回报的同时有效管理风险。反思组件是框架性能的关键贡献者,实现了基于历史结果和市场条件的自适应学习。未来研究将专注于通过纳入强化学习技术扩展框架,以提高框架对快速变化的市场条件的适应性。
AI大模型学习路线
如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!
扫描下方csdn官方合作二维码获取哦!
这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
100套AI大模型商业化落地方案
大模型全套视频教程
200本大模型PDF书籍
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
LLM面试题合集
大模型产品经理资源合集
大模型项目实战合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
