深夜无法入眠,就爬起来看了几个小时论文,又想写一些什么,于是就爆肝上万字,有了下面的一个大模型及智能体安全最新研究综述
1. 模型对齐与安全训练
模型对齐(Alignment)是指通过附加训练让大模型的行为符合预期的安全和伦理规范,例如拒绝不当请求、不输出有害内容等。最新的多篇论文均聚焦于如何改进和评估大模型的对齐效果,以及对齐过程可能带来的副作用。
1.1 安全对齐的深度与代价:
Kao等人在2025年2月发表的论文从马尔可夫链理论视角分析了对齐深度对模型安全性的影响。他们提出“安全对齐深度”(Safety Alignment Depth)的概念,指出许多现有对齐仅在模型输出的最初若干 token 上奏效,属于“浅层对齐”,因此容易被后续内容绕过。该工作利用自回归语言模型与马尔可夫链的等价性,首次给出了确定理想对齐深度的理论结果,并证明了一种基于排列的数据增强方法可以收紧对深度的下界估计。他们还发现对齐深度和模型集成宽度之间存在此消彼长的关系:增加模型集成的宽度(例如merge多个模型)可以在一定程度上弥补对齐深度不足的问题。这些理论见解为设计更鲁棒的对齐策略奠定了基础。与此相关,Qi等人(2025年1月,ICLR 2025)也指出当前LLM的安全对齐往往过于浅薄,只影响最初几个输出token,导致简单攻击或无害微调即可“越狱”对齐模型。他们通过案例分析揭示了浅层安全对齐这一共性问题,并将其命名为“Shallow Alignment”,进一步设计了在微调时约束初始tokens更新的正则化方法,使安全对齐在面对后续微调时更持久。这一系列工作强调了加深安全对齐的重要性——即对齐策略不应只顾及模型开头的回应,而应贯穿整个生成过程,以抵御多种绕过手段。此外,Huang等人(2025年3月)关注对齐的代价问题,提出了“安全税”(Safety Tax)的概念。他们研究了推理模型(Large Reasoning Model, LRM)在应用安全对齐后的性能变化,发现安全对齐虽然可以显著提高模型拒绝不良请求的能力,但会显著削弱模型的推理复杂问题的能力。换言之,在他们构建的序贯生产流程中,模型的安全能力和推理能力存在此消彼长的权衡(trade-off)。这一权衡被称为“安全税”,提示未来研究需要在提高安全性和保持模型有用性之间取得更好的平衡。上述研究从不同角度揭示了模型对齐过程中的深层机制和权衡,为改进对齐方法提供了指引。
1.2 对齐方法的创新:
为提高对齐效果,研究者提出了多种新方法。“协商式对齐”(Deliberative Alignment)由Guan等人提出。该方法让模型在回答用户问题前,先明确回忆并推理所学的安全规范。他们直接将安全原则教给模型,并训练它在作答前逐条检查相关原则,进行显式的推理判断,再决定输出。实验表明,这种让模型“深思熟虑”遵循安全政策的方式,使模型在遵守复杂安全要求方面显著提升,能同时增强对越狱攻击的鲁棒性和减少过度拒答(不过度地拒绝安全请求)。相比不引入额外思考步骤的对齐方法,协商式对齐推动了安全性和有用性的良好折中,被认为是一种更可伸缩和可解释的对齐范式。
Ji等人(2025年2月)提出了推理时对齐的新框架,即不改变模型权重,而是在推理过程中通过形式化约束确保输出安全。他们将安全响应生成建模为LLM隐空间中的约束马尔可夫决策过程(CMDP),引入一个安全状态来跟踪安全约束是否满足,并设计了算法在隐空间中求解该CMDP,从而对每一步输出提供接近100%置信度的安全保证。这一方法名为InferenceGuard,在不需要重新训练模型的情况下,实现了对生成内容的强安全约束,实验证明它在确保回答安全的同时基本不损失任务性能,且优于以往的推理时对齐方法。
Djuhera等人(2025年3月)关注模型微调后的安全保持问题。他们指出,即使是无害的数据微调也可能侵蚀预先对齐好的模型的安全性。为此,他们提出SafeMERGE框架:在模型微调完下游任务后,将其权重与原先安全对齐模型的权重逐层选择性融合。融合采用一种余弦相似度判据,仅当微调导致某一层行为偏离安全模型时,才将该层权重部分替换回安全模型,以此保留安全特性。在Llama-2-7B和Qwen-7B等模型上测试表明,SafeMERGE在确保任务性能基本不变甚至略有提升的情况下,大幅减少了有害输出的发生频率,明显优于直接微调和其他已有防御措施。这一结果说明,通过巧妙的后融合策略,可以兼顾模型专用任务能力与通用安全性。
总的来说,上述创新方法(显式原则推理、推理时安全控制、层权重融合等)为提升大模型对齐的鲁棒性和有效性提供了新的思路,在实践中显示出优越性能。
1.3 多模态对齐与安全:
随着视觉-语言等多模态大模型的发展,其安全对齐也带来了独特挑战。Lu等人(2025年2月)提出,训练包含图像、音频等模态的多模态大模型(MLLM)安全对齐需要大量跨模态正负样本数据,收集成本高昂。他们发现现有低资源安全对齐方法(仅用文本数据)在应对附加模态的攻击时效果不佳。为此,该团队提出了SEA(Synthetic Embedding Augmented safety Alignment)方法,通过梯度优化附加模态的表示向量,在无需真实图像/音频的情况下生成可用于对齐训练的“合成模态嵌入”。简单来说,就是把额外模态看成可训练参数,用梯度下降找到一种嵌入,使模型把它解释为含有指定有害内容的图像/音频。将这种优化后的嵌入与原有文本安全数据结合训练,即可达到类似使用真实多模态有害数据的对齐效果。实验在图像、视频、音频三种模态的多个MLLM上验证了SEA的有效性:在一张RTX3090上仅24秒即可合成高质量模态嵌入,并显著提升模型抵御附加模态攻击的安全性。此外,作者构建了新基准VA-SafetyBench来评估视频和音频模态引入的安全风险,结果显示多个模型在该基准上的攻击成功率很高,凸显了多模态场景的挑战。
另一项研究是Rahmatullaev等人(2025年2月)提出的多模态对齐绕过攻击。他们设计了一种通用对抗图像,通过对视觉编码器和语言头反向传播优化,使其可以在不同行为和模型都触发预设的有害回答。换言之,这是一张可以“一图破防”多个模型的对抗图片。实验表明,在SafeBench安全基准上,该图片攻击的成功率远高于以往的文本触发词。更令人担忧的是,他们将此图片在数个多模态模型上联合训练,发现对未见过的模型同样有效,展示了跨模型的迁移攻击能力。下图展示了这一攻击的效果:在没有对抗图片时,模型会遵循对齐策略拒绝提供违法指引;但当加入特定优化过的图片时,同一模型在相同有害请求下却输出了详细的步骤。这一现象暴露出当前多模态模型对齐机制的重大漏洞——单凭一张精心生成的图像即可绕过文本层面的安全约束,诱使模型生成本应被禁止的内容。此发现呼吁研究者尽快提升多模态模型的鲁棒性,并制定更健全的防御措施。
图左:模型在无对抗图片时对违法请求进行拒绝,体现了安全对齐策略;右:插入特定优化的对抗图片后,模型被诱导输出了违禁的方法。该结果表明附加模态输入可用于绕过大型语言模型的安全机制。
1.4 对齐机制的可解释性分析:
为了深入理解模型的安全对齐机制,一些研究从神经元层面进行了解释和调控。Zhao等人(2025年3月,ICLR 2025)提出利用神经元检测方法来识别模型中的“安全神经元”——即对处理有害查询和防御不当回答起关键作用的神经元。他们发现,在若干主流对齐模型中,仅有不到1%的神经元对安全相关行为有显著贡献,而且这些神经元主要位于模型的自注意力层靠前的位置。这意味着模型的安全响应机制是由极少数专门的神经元协同管理的。据此,作者提出了SN-Tune(安全神经元微调)方法:在不损害模型原有能力的前提下,只调整这极少部分安全神经元的权重,从而增强模型的安全表现。实验结果相当惊人:对Llama3-8B、Mistral-7B、Vicuna-13B等模型应用SN-Tune后,其有害内容生成评分从原先的65.5、70.8、93.5分分别降低到仅2.0、4.5、3.0分(分值越低表示越安全)。这表明通过精细定位并优化安全神经元,可以极大提升模型对指令调优后的安全性。论文还提出了RSN-Tune(鲁棒安全神经元微调),用于在下游任务微调过程中保持安全神经元的独立性,避免其被新的任务训练破坏。
Ferrand等人(2025年1月)研究了对齐模型内部的安全分类器。他们认为对话式LLM经过对齐训练后,内部其实隐含了一个负责决定“拒答或执行”的二元分类器。为验证这一假设,他们开发算法从模型中提取出这个代理分类器的近似模型(称为替代分类器)。实验显示,在Llama2等模型上,用不到20%的参数就能构造出与原模型安全判断高度一致的替代分类器。更进一步地,他们利用这些替代模型做白盒攻击,成功将攻击成功率从直接攻击LLM时的22%提升到对替代模型攻击的70%,并可迁移回原LLM产生同等高的攻击效果。这说明LLM内部的安全决策机制可以被分离并单独攻破,暴露了当前对齐方法的脆弱性。这些针对模型安全机理的可解释性研究,加深了我们对对齐工作原理的认识,并为将来定向加固模型安全提供了新途径。例如,发现安全神经元为定向微调提供了靶标,而提取安全分类器则帮助识别模型易受攻击的决策边界。
2. 对抗攻击与鲁棒防御
除了对齐策略本身的改进,大模型在对抗性攻防方面也是近期研究的热点。对抗攻击指恶意构造输入诱使模型产生错误或有害输出,而鲁棒防御则针对这些攻击增强模型的稳定性和安全性。
2.1 对抗攻击新策略:
Geisler等人(2025年2月)提出了一种用于大语言模型的自适应对抗提示生成方法。以往的优化攻击通常通过最大化某个固定“危险回答”的概率来寻找提示,但他们发现这种方法往往高估模型鲁棒性:因为提示虽让模型以高概率输出危险开头,但模型后续可能不会完整给出有害内容。为克服此局限,他们将攻击目标改为提高模型输出整个回答中出现目标有害内容的概率(即从考虑单一触发词提升为考虑完整回答分布)。
在此目标下,他们利用强化学习中的REINFORCE策略梯度推导出通用的优化目标,并结合贪婪坐标梯度(GCG)和PGD等最先进算法,对如Llama3等模型实施攻击。结果表明,新目标将某些模型的攻击成功率提高了一倍,在结合OpenAI的“断路器”防御时,成功率从2%飙升至50%。这说明更贴合模型偏好的攻击目标能显著提升越权生成不良内容的能力。另一项由Winninger等人(2025年3月)开展的研究,则将模型可解释性用于辅助生成攻击。他们认为传统白盒攻击只看梯度,未利用模型内部机制信息。因此,他们首先用机械解释方法识别出模型内部的“接受子空间”和“拒绝子空间”,即激活后分别倾向于接受请求或拒绝的特征方向。接着通过优化,使输入的表示从拒绝子空间偏移到接受子空间,从而实现精确的对齐绕过。这种基于内部机制的定向攻击成功率高达80-95%,生成有害响应只需几秒或几分钟计算。相比之下,以往方法要么经常失败要么耗时数小时。由此可见,结合模型内部原理的攻击手段能大幅提升效率和成功率,也为开发相应防御指明了方向。
Wang等人(2025年2月)发表了一篇综合分析文章,站在攻击目标角度重新审视LLM的对抗威胁。他们没有按常规以攻击技术分类,而是依据攻击者意图,将威胁划分为隐私、完整性、可用性、误用四大目标。这种客观驱动的分类突出不同攻击手段背后的战略意图,并审视了现有防御的有效性。例如,针对隐私目标的攻击包括模型记忆中敏感信息的提取,针对完整性的攻击包括诱导模型生成偏见或错误信息等。通过这种视角,他们讨论了各种新兴威胁和应对策略,为研究者和实践者提供了全局指南。对抗攻击研究正朝着更智能(利用模型内部机制)和更全面(考虑不同攻击意图)的方向发展。
2.2 鲁棒性评估与防御:
Chen等人(2025年1月)专注于评估大模型在最坏情况下的鲁棒性,并提出了相应防御。他们指出许多防御方案未经强适应性攻击测试,模型最坏情况下的鲁棒性仍不明确。通过开发更强的白盒攻击,他们发现主流防御在强攻击下几乎全部失效,鲁棒准确率接近0%。鉴于此,他们提出了DiffTextPure防御框架,其核心思想是借鉴图像领域的扩散-净化策略,先对输入提示加入噪声进行扩散(diffuse),再用预训练语言模型净化(purify)成原始输入,以消除对抗扰动。理论分析上,他们利用分形和0-1背包求解得出了针对任意扩散噪声分布的鲁棒性下界。在此基础上,他们对一种特定均匀扩散核进行了鲁棒性认证,证明该方法可抵御任意可能攻击,使模型在平均2个token被修改或追加6个token后仍保持一定安全性。这是LLM领域首次给出可认证的鲁棒性保证,为提升最坏情况安全提供了工具。
除了通用防御,一些论文还聚焦特定场景下的安全问题。例如,Hu(2025年1月)研究了LLM驱动的搜索引擎易遭受的对抗性排名操纵攻击。攻击者可以通过在网页内容中嵌入触发LLM错误判断的文本,从而提升恶意页面的排序。作者将这一问题建模为无限重复博弈(类似囚徒困境),分析了多方攻击者在选择合作或攻击策略时的均衡条件。结果发现,如果防御策略仅是简单降低攻击成功率,反而可能在某些条件下激励更多攻击行为;而给攻击成功率设上限的措施在某些情景下也无效。这表明在设计安全策略时需要考虑攻击者的理性响应和长期互动,仅靠降低单次攻击成功率未必稳妥。该研究为像新型搜索引擎等开放环境中的LLM安全提供了宝贵的博弈论视角。最后值得一提的是,Liu等人(2024年12月,AISTATS 2025)探讨了LLM用于时间序列预测时的对抗脆弱性。他们发现,将预训练LLM应用于时间序列任务(如LLMTime框架)时,即使模型在文本上表现出色,也会受到细微输入扰动的严重影响。通过黑盒和梯度自由方法,他们生成了幅度很小但能显著降低预测精度的扰动,在GPT-4、LLaMA等多种架构上均有效。实验表明,相比随机噪声,这些对抗扰动使预测误差恶化得更为剧烈,凸显了LLM在非语言任务中同样存在安全隐患。这一发现提醒我们,不应想当然地认为LLM在新领域应用时是安全的,需要针对不同应用场景进行专门的鲁棒性评估和防护。
2.3 隐私与数据安全:
大模型常在海量数据上训练,这些数据中可能包含敏感个人信息,因而训练隐私泄露也是安全的重要一环。针对LLM的隐私泄露风险,Panda等人(2025年3月,普林斯顿大学与DeepMind)进行了大语言模型隐私审计。他们指出现有审计技术通常通过植入易识别的“金丝雀”字符串来测试模型记忆,但这种方法得到的隐私泄露下界很松散。为此,他们设计了更加有效的金丝雀生成方法,覆盖多种实际威胁场景,使得即使在攻击者无法训练影子模型或访问训练过程的严格条件下,依然可以显著检测出模型的隐私泄露。在多个经过微调的LLM上实验表明,新金丝雀相比以前方法极大提高了检测灵敏度。例如,对于Qwen2.5-0.5B模型,他们的方法在一定误报率下的真正率远超之前工作。研究人员声称这是首次在攻击者能力受限(不能训练影子模型等)的现实条件下,实现了非平凡的LLM隐私审计成功率。这项工作为模型开发者评估模型记忆中敏感信息的风险提供了新工具,有助于在部署前发现并减轻潜在的隐私问题。另一方面,Meng等人(2025年2月)关注训练数据中的PII(个人身份信息)重建风险。他们提出“重忆并排序”(Recollect & Rank, 简称R.R.)攻击,两阶段从掩码化的训练数据中还原被去除的PII。第一阶段,利用提示引导模型回忆原始句子并填充被掩盖的敏感实体,从中提取可能的PII候选;第二阶段,设计一种排名准则(借鉴了成员推断思路,用未对齐模型作为参考),对候选实体进行打分排序。在包括姓名、电话等三类PII数据集上的实验显示,R.R.方法相较基线在PII还原准确率上提升超过一倍,成功复原出了许多“脱敏”训练数据中的敏感字段。这说明即便训练数据经过表面脱敏处理,模型仍可能记住足够信息被攻击者还原出敏感内容,存在严重隐私隐患。
为防范此类风险,Tran等人(2025年2月)提出了一种双重目标训练方法,在保持模型性能的同时降低成员推断攻击成功率。他们通过分析训练过程中token级别的动态,区分出需要重点学习的“困难token”和容易过度记忆的“易记token”。然后在训练目标中加入一个针对易记token的惩罚项,鼓励模型“遗忘”这些token,从而削弱攻击者通过成员推断识别训练样本的能力。实验发现,该方法不仅显著降低了成员推断攻击的成功率,还意外地将语言模型的困惑度等指标提升了约10%。作者认为,这是因为减少记忆无关细节、加强对关键难点的学习,反而提高了模型的泛化能力 。这项工作表明,隐私保护与模型性能并非总是冲突的,通过精细设计训练目标,有可能实现双赢。
综上,围绕大模型安全,近期研究在对齐机制(从浅层到深层对齐、主动思考原则等)、对抗攻防(更强攻击与可认证防御)、隐私保护(高效审计与训练过程改进)等方面取得了丰富成果。这些工作共同推进了我们对大模型安全挑战的认识,并为构建更安全可靠的AI模型打下基础。下面跟着我一起关注一些智能体的安全研究进展。
3. 自主代理的行为控制与安全评估
大型语言模型的兴起催生了各种自主AI代理(autonomous agents),它们能在较少人类干预下连贯地执行复杂任务(如自动编写代码、联网操作等)。然而,随着代理自主性的提高,其潜在风险也显著增加。2025年初,有学者从伦理和治理角度对自主代理提出了警示,也有研究探索衡量自治程度和自动红队测试的方法。
3.1 自主等级与行为控制:
Mitchell等AI伦理学者(2025年2月)发表文章明确主张“不应开发完全自主的AI代理”。他们将当前Agent按自主程度分级,指出随着系统能自主决策和行动的范围扩大,用户对其控制的让渡越多,由此带给人的安全风险也直线上升。特别是在高级自治级别下,代理可以自主编写和执行代码,潜在能够规避预设限制,出现难以预料的违规。作者举例说明了一些与自主代理相关的安全风险:如人身安全(不当指令可能危及生命)、隐私(代理被利用窃取敏感信息)和错信(用户过度信任代理导致放松警惕)。鉴于此,他们呼吁AI社区在推进高自主代理时保持慎重,认为除非能确保可靠的行为控制机制,否则完全自主的代理系统不应被开发和部署。这番观点引发了业界对自主与安全权衡的激烈讨论。一方面,完全禁止高级自治可能阻碍技术进步;另一方面,他们的警示也促使研究者思考如何在提高代理能力的同时,赋予用户足够的监督与终止权。Jang等人(2025年2月)从更技术的角度提出了一种代理自主性测量框架。他们分析了当前流行的Agent开发框架(如AutoGen、LangChain)的设计,以及开源应用中实际使用这些框架实现自治的程度。基于此,他们提出了评估AI代理自治水平的分类法,包括决策自主(无监督执行决策的能力)、交互自主(长时间多步交互的能力)等维度,并通过代码检查对一些现有Agent应用打分。这样的研究有助于量化代理的自治程度,为监管和治理提供指标:例如,监管者可以要求高于某自治等级的系统必须配备额外安全措施。总的来说,这些工作在呼吁加强自主代理安全的同时,也在探索衡量和限制自主的工具,以期在创新和安全之间取得平衡。
3.2 自动红队与安全评估:
面对自主代理可能的复杂行为,仅靠人工测试难以覆盖所有场景,因而自动化的红队攻击成为评估这类系统安全性的重要手段。Zhou等人(2025年3月,斯坦福等)提出了AutoRedTeamer框架,实现了端到端的完全自动LLM红队系统。它结合了多代理架构和记忆引导的攻击选择机制,能够持续发现和整合新的攻击手法。AutoRedTeamer由两个Agent组成:一个红队Agent根据高层风险类别自动生成并执行测试用例,另一个策略提案Agent通过分析最新论文自主发掘新的攻击策略,并实现和纳入这些策略。这种模块化设计使系统能不断适应新出现的攻击向量,同时保持对已有攻击的强大性。实验证明,AutoRedTeamer在多个评估设置下效果显著优于以往方法:在HarmBench基准上针对Llama-3.1-70B模型,攻击成功率提高了20%,计算成本降低了46%。此外,它生成的测试用例多样性与人工基准相当,覆盖广泛的风险类型。下图展示了AutoRedTeamer的整体架构:
上半部分红队评估代理包含风险解析器、种子生成器、策略设计器等模块,负责根据用户输入的广义风险类别,演化出多样的具体对抗提示并测试目标模型;下半部分策略提案代理则通过学术文献和工具平台持续收集潜在攻击点,实现新的攻击策略(如改变语气、角色扮演、修改时态等)并交付给攻击库,以融入后续评估流程。AutoRedTeamer体现了持续学习和多Agent协作在安全评估中的威力,为构建自动化、安全测试系统树立了典范。
与此同时,Schoepf等人(2025年3月)提出了MAD-MAX方法,专注于提升自动红队攻击的效率和多样性。他们指出已有方法如「攻击树剪枝」(TAP)在成功率、代价或扩展性上存在不足。MAD-MAX通过模块化地组合多种攻击策略来生成恶意攻击混合:先自动将已知攻击策略划分为若干簇,根据给定攻击目标选择相关簇中的策略组合出新的提示,再迭代融合表现优秀的攻击以进一步增强效果。同时,引入相似性过滤以剔除冗余类似的攻击样本,从而提高成本效率。这种设计便于将未来出现的新攻击策略直接加入,相当具有扩展性。实验表明,MAD-MAX在攻破顶尖对齐模型方面远胜TAP等基线:针对GPT-4开放模型和Gemini-Pro,MAD-MAX在仅需平均10.9次查询的情况下就能使97%的恶意目标请求成功越权生成(对比TAP成功率66%,查询数23.3)。可见,通过灵活地组合多样攻击组件并自适应优化,完全自动的方法也能达到媲美人工专家甚至更高的攻击能力。
Singhania等人(2025年4月,NAACL 2025)则关注多轮对话和多语言情境下的安全风险评估。他们提出MM-ART(Multi-lingual Multi-turn Automated Red Teaming),用于全面测试对话型LLM在长对话和非英语语言下的越权倾向。他们指出,以往红队评估多限定单轮英文对话,无法覆盖模型日益增强的多轮交互和多语种能力。通过自动化生成多语种的连续对话脚本进行测试,MM-ART发现:对于英文,在对话进行到第5轮时,模型暴露出的安全漏洞数量比第一轮平均增加了71%;而在非英语(如西班牙语、阿拉伯语等)对话中,模型的违规脆弱性比单轮英文对话高出最多195%。这清晰地证明了多轮和多语种交互会显著削弱当前模型的安全性。因此作者强调,评估LLM安全性时必须考虑其真实应用中的复杂使用方式,开发如MM-ART这样覆盖多语多轮的自动化红队工具,以及时发现模型在这些场景下的隐患。
综上,在智能体安全方面,强化学习智能体的安全策略和自主代理的安全评估均得到了深入研究。安全RL从在线到离线、多智能体均有新方法提高安全保障,而面对具有高度自主性的LLM代理,学界一方面在原则上呼吁谨慎,另一方面也积极开发自动化的红队评估工具来及时发现问题。随着AI系统在现实中承担越来越多自主决策任务,上述研究为确保这些系统可靠、安全地运行提供了重要支撑。
4. 未来趋势与研究展望
综观最新的大模型与智能体安全研究,我们可以总结出以下发展趋势和潜在空白:
1. 从经验策略到理论保证:许多工作开始寻求可证明的安全而非仅凭经验优化。例如LLM鲁棒性认证等为模型提供了形式化的安全保证。未来,这种趋势可能进一步扩展到更复杂的场景,例如多模态模型的可认证鲁棒性、强化学习环境下策略的可验证安全性等。这需要跨领域的方法,将形式验证、博弈论等工具融入AI安全。
2. 安全与效用的权衡平衡:对“安全税”、“对齐税”的讨论表明提高安全性往往会牺牲模型某方面性能。这一对立将推动研究者寻找两全之策,如通过更精细的训练或辅助模块,降低安全对性能的负面影响。如何定量评估和优化这种权衡仍是开放问题,需要建立统一的指标体系和平衡优化方法。
3. 多模态与多语言安全:随着AI从“文字”扩展到“万物”,模型需要面对不同模态和语言环境下的安全挑战。当前研究已发现多模态输入(图像、音频)和非英语输入是安全防线的薄弱环节。因此未来应加大对跨模态、跨语言安全机制的研究,包括构建多语言有害内容数据集、更通用的对齐策略以及应对模态间协同攻击的防御算法等。
4. 内部机制挖掘与利用:安全神经元、内嵌安全分类器等研究表明,深入模型内部机制可以发现可供利用的结构。未来一方面应继续挖掘模型内部与安全相关的信号(如更多类型的安全神经元、回路等),另一方面可以尝试将这些发现用于改进模型架构。例如,是否可以在模型设计时就加入专门的安全模块或约束回路,使模型从底层具有更好的安全属性?这可能形成安全AI模型的新范式。
5. 人机协同与反馈融合:无论大模型还是智能体,有效的安全管控都离不开人类的参与。如何高效地利用人类反馈来指导模型安全(如人类偏好分类用于离线安全RL,如何实现人机协同共管代理行为,将是重要方向。未来或许会出现“人类监督-AI裁决”双层架构:AI负责大部分普通决策,但涉及高风险决策时自动征询人类授权,从而在效率和安全之间取得动态平衡。
6. 评测基准的演进:随着攻防手段演化,安全评测基准需要持续更新。未来可能出现更加全面动态的评测方式——不仅评价模型在静态基准上的表现,还测试其在交互、连续对话、复杂环境中的安全稳定性。例如,多轮对话、多智能体博弈测试等将更常见。另外,安全评测也应纳入公平性、伦理等更广泛的考量,从而促使模型在避免有害内容之外,也不产生偏见或歧视。
在研究空白方面,情境安全理解仍不足:模型对指令的安全性判断在复杂上下文中可能失效,这是“对齐”尚未完全解决的问题。此外,实时在线学习如何兼顾安全也是空白——模型在持续学习新知识时如何避免忘记安全准则,防止“学坏”,这一问题尚未有成熟方案。
总之,大模型和智能体的安全是一个动态演进的挑战领域。近期的研究进展令人鼓舞地展现了各种创新思路,从底层机理到顶层系统均有突破。然而,随着模型能力的增长和应用的扩张,我们也必须保持警惕,不断完善安全策略。未来的AI安全研究需要跨学科结合(机器学习、安全工程、人因科学、法规政策等),需要攻防同步推进,更需要产业界和学术界的紧密合作。只有这样,我们才能在充分释放人工智能潜能的同时,将其风险控制在可接受范围之内,确保AI技术造福人类而非伤害人类。相信在全社会的共同努力下,建立“可信任且安全”的大模型与智能体将逐步从愿景走向现实。
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K(数据来源:BOSS直聘报告)
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
* 大模型 AI 能干什么?
* 大模型是怎样获得「智能」的?
* 用好 AI 的核心心法
* 大模型应用业务架构
* 大模型应用技术架构
* 代码示例:向 GPT-3.5 灌入新知识
* 提示工程的意义和核心思想
* Prompt 典型构成
* 指令调优方法论
* 思维链和思维树
* Prompt 攻击和防范
* …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
* 为什么要做 RAG
* 搭建一个简单的 ChatPDF
* 检索的基础概念
* 什么是向量表示(Embeddings)
* 向量数据库与向量检索
* 基于向量检索的 RAG
* 搭建 RAG 系统的扩展知识
* 混合检索与 RAG-Fusion 简介
* 向量模型本地部署
* …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
* 为什么要做 RAG
* 什么是模型
* 什么是模型训练
* 求解器 & 损失函数简介
* 小实验2:手写一个简单的神经网络并训练它
* 什么是训练/预训练/微调/轻量化微调
* Transformer结构简介
* 轻量化微调
* 实验数据集的构建
* …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
* 硬件选型
* 带你了解全球大模型
* 使用国产大模型服务
* 搭建 OpenAI 代理
* 热身:基于阿里云 PAI 部署 Stable Diffusion
* 在本地计算机运行大模型
* 大模型的私有化部署
* 基于 vLLM 部署大模型
* 案例:如何优雅地在阿里云私有部署开源大模型
* 部署一套开源 LLM 项目
* 内容安全
* 互联网信息服务算法备案
* …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】