多模态大模型研究综述

人工智能咨询培训老师叶梓 转载标明出处

尽管LLMs在自然语言处理(NLP)任务上表现出色,但它们在视觉方面是“盲”的,即只能理解离散的文本信息。与此同时,大型视觉模型(LVMs)虽然在视觉识别上表现出色,但在推理方面通常不如LLMs。MLLM的出现,正是为了结合LLM和LVM的优势,实现对多模态信息的接收、推理和输出。由中国科学技术大学数据科学系和腾讯油图实验室的研究团队联合发表的一篇论文《A Survey on Multimodal Large Language Models》,系统地回顾了MLLMs的最新研究进展。图1展示了多模态大型语言模型(MLLMs)的发展历程。

架构

图2展示了一个典型的多模态大模型(MLLM)的架构,它由编码器(Encoder)、连接器(Connector)和大模型(LLM)组成。此外,还可以选择性地连接一个生成器(Generator),用于生成除文本之外的其他模态数据,如图像、音频或视频。

模态编码器(Modality Encoder)

模态编码器负责将原始信息如图像或音频压缩成更紧凑的表示形式。通常采用预训练的编码器,这些编码器已经在大规模图像-文本对上进行了预训练,从而与文本语义对齐。例如,CLIP模型就是这样一种编码器。Table 1 展示了一些常用的图像编码器变体,包括它们的预训练语料库、分辨率、样本数量和参数大小。在选择编码器时,会考虑分辨率、参数大小和预训练语料库等因素。特别是,许多研究已经证明使用更高分辨率的输入可以获得显著的性能提升。

预训练的大模型(Pre-trained LLM)

与从头开始训练一个大模型相比,使用预训练模型更为高效和实用。预训练模型已经在网络语料库上进行了大量预训练,嵌入了丰富的世界知识,并展现出强大的泛化和推

### 关于多模态大模型中偏见问题的研究综述 #### 定义与背景 多模态大型语言模型(MLLM)能够处理来自不同源的数据,如文本、图像和其他形式的信息。然而,在这些强大的功能背后隐藏着一些挑战,其中包括偏见问题。当涉及到多种数据类型的融合时,如果训练过程中使用的数据集存在偏差,则可能导致生成的结果也带有类似的倾向性[^2]。 #### 数据层面的偏见 由于用于构建和微调MLLMs的数据通常是从互联网上收集而来,而网络本身并非完全公平公正之地;因此,所获取的内容不可避免地会携带各种社会文化上的刻板印象或歧视观念。例如,在视觉识别方面可能出现性别职业定型化现象——即某些特定工作总是被关联到某一类人群身上[^4]。 #### 模型架构影响下的偏见传播 除了输入端存在的局限外,算法结构同样可以加剧已有的不平衡状况。即使初始状态下看似平等对待每种可能性,随着迭代次数增加以及参数调整过程中的累积效应,细微差异也可能逐渐放大成为显著区别对待的情况。特别是在涉及跨领域或多感官信息综合判断的任务里,这种情况尤为明显[^1]。 #### 应对措施探讨 为了缓解上述提到的各种形式的偏见问题,研究人员提出了若干解决方案: - **多样化数据采集**:确保涵盖更广泛代表性样本; - **对抗性学习机制引入**:通过专门设计损失函数来抑制那些容易引发争议性的特征表达; - **透明度提升及解释力增强**:让用户更容易理解决策背后的逻辑依据,以便及时发现并纠正可能存在的不公平因素[^3]。 ```python def reduce_bias_in_model(model, dataset): """ 减少模型中的偏见 参数: model (Model): 要优化的大规模多模态模型实例. dataset (Dataset): 训练该模型所需的数据集合. 返回: optimized_model (Model): 经过改进后的版本. """ pass # 实现减少偏见的具体方法 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人工智能大模型讲师培训咨询叶梓

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值