大型语言模型(LLMs)运行起来计算成本很高。它们需要大量内存来存储模型参数和推理过程中的中间计算。系统内存(RAM)肯定是搞不定的,因为它比 GPU 内存算的慢。GPU 内存,也称为 VRAM(视频内存)或 GDDR(图形 DDR),专门设计用于高性能计算任务,如深度学习。它提供了高效运行大型语言模型所需的速度和带宽。这使得 LLMs 能够高效地执行复杂计算,而不会遇到由内存和处理单元之间的数据传输引起的限速问题。
因此,GPU 的 VRAM 越多,它能够托管和部署的 LLM 就越大。
部署 LLM 的 GPU 内存需求应该怎么算
用于估算部署 LLM 所需 GPU 内存的一个常见公式是:
-
P(参数):模型中的参数数量。例如,GPT-3 有 1750 亿个参数,Llama-70b 有 700 亿个参数等。
-
Q(精度或每个参数的大小):用于存储模型参数的数据类型。常见的数据类型包括:
-
FP32(32 位浮点数):每个参数 4 字节
-
FP16(半精度/BF16)(16 位浮点数):每个参数 2 字节
-
INT8(8 位整数):每个参数 1 字节
-
INT4(4 位整数):每个参数 0.5 字节
开销因子:这考虑了推理过程中使用的额外内存,例如存储模型的激活(中间结果)。典型的开销因子是 20%。
例如,让我们考虑一个虚构的 LLM,名为 Llama 70B,有 700 亿个参数。如果模型以 float32 格式存储,并且我们假设一个 20% 的开销因子,则内存需求可以如下计算:
要运行此模型,你需要两个 NVIDIA A-100 80GB 内存模型。
如何减少部署 LLM 的 GPU 内存需求?
减少 GPU 内存需求的一种方法是量化。量化是一种技术,通过将模型参数从更高精度格式(例如,float32)转换为更低精度格式(例如,float16 或更低)来降低模型参数的精度。这可以在不显著影响准确性的情况下显著减少内存使用。
在我们的 Llama 70B 示例中,使用 float16 精度而不是 float32 可以将内存需求减半(从每个参数 4 字节减少到 2 字节)。
量化技术可以通过使用更低精度格式(如 INT8、INT4)进一步减少内存占用,但降低精度可能会对输出的准确性产生影响。例如,INT8 量化有时会导致比 FP16 更明显的准确性下降。在量化前后评估模型的性能至关重要。
总结
部署大型语言模型需要大量的 GPU 内存资源。所需的内存量取决于模型的大小和复杂性、用于存储参数的数据类型以及应用的优化(如量化)。通过了解影响 GPU 内存需求的因素,开发人员可以做出明智的决策,以实现 LLMs 的最佳性能和效率。
零基础如何学习AI大模型
领取方式在文末
为什么要学习大模型?
学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。
大模型典型应用场景
①AI+教育:智能教学助手和自动评分系统使个性化教育成为可能。通过AI分析学生的学习数据,提供量身定制的学习方案,提高学习效果。
②AI+医疗:智能诊断系统和个性化医疗方案让医疗服务更加精准高效。AI可以分析医学影像,辅助医生进行早期诊断,同时根据患者数据制定个性化治疗方案。
③AI+金融:智能投顾和风险管理系统帮助投资者做出更明智的决策,并实时监控金融市场,识别潜在风险。
④AI+制造:智能制造和自动化工厂提高了生产效率和质量。通过AI技术,工厂可以实现设备预测性维护,减少停机时间。
…
这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。
学习资料领取
如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
部分资料展示
一、 AI大模型学习路线图
整个学习分为7个阶段
二、AI大模型实战案例
涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
三、视频和书籍PDF合集
从入门到进阶这里都有,跟着老师学习事半功倍。
四、LLM面试题
五、AI产品经理面试题
六、deepseek部署包+技巧大全
😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~