4090单卡部署671B DeepSeek,本地部署“成本骤降32倍”,助力R1真正落地「中小企业」中!

“ 近期国内外都流行一股DeepSeek-R1部署热,大家都纷纷在自己的本地主机上面尝试着部署满血版本的DeepSeek-R1。然而,要部署一个完整的版本的DeepSeek-R1在本地,大概需要16张A800,大概会花费200百万左右的成本。产业界苦671B的大模型已久,希望能有一些低成本的满血版671B DeepSeek部署方案。小编今天给大家推荐一个框架-KTransformers,它支持在单台(24GB VRAM)/多gpu和382G DRAM上的Deepseek-R1和V3,速度提升3~28倍。这可能是很多朋友一直在寻找的东西吧,感兴趣的尽快收藏。”

项目主页-https://github.com/kvcache-ai/ktransformers/tree/main
代码链接-https://github.com/kvcache-ai/ktransformers/tree/main

Alt

01-DeepSeek-R1部署痛点梳理

Alt
  近期国内外都流行一股DeepSeek-R1部署热,大家都纷纷在自己的本地主机上面尝试着部署满血版本的DeepSeek-R1。然而,要部署一个完整的版本的DeepSeek-R1在本地,大概需要16个A800,大概会花费200百万左右的成本。这高昂的部署成本直接劝退了很多人,然而仍然有一些财大气粗的公司花费了巨额资本部署了满血版本的DeepSeek-R1。
  除此之外,大量的网友表示70B及以下的小模型效果与满血版本的性能差异较大。而微调模型的成本也比较高。由于上面的一些限制,导致满血版大模型的能力并不能很好的赋能更多的人。产业界苦671B的大模型已久,希望能有一些低成本的满血版671B DeepSeek部署方案。

02-ktransformers框架简介

Alt
  KTransformers,发音为Quick Transformers,它旨在利用高级内核优化和放置并行来增强您的🤗 Transformers。
  KTransformers是一个灵活的、以Python为中心的框架,其核心是可扩展性。通过利用一行代

### 使用单张 RTX 4090 显卡运行 DeepSeek-R1 671B 参数量模型的技术分析 #### 技术可行性 从技术角度来看,使用单张 RTX 4090 显卡来运行具有 671B 参数量的 DeepSeek-R1 模型是一个极具挑战性的任务。RTX 4090 配备了 24GB GDDR6X 显存,在理论上可以支持一些大型模型的推理工作,但对于如此大规模的参数量来说仍然显得捉襟见肘[^1]。 为了克服显存不足的问题,通常会采用混合精度训练(FP16)、激活检查点技术和分布式计算等方法。然而,这些优化措施对于仅有一块 GPU 的情况效果有限。因此,虽然不是完全不可能实现,但在实际操作中可能会遇到诸多困难并影响最终性能表现[^2]。 #### 所需配置 针对此特定需求下的硬件与软件环境建议如下: - **GPU**: NVIDIA GeForce RTX 4090 (24 GB VRAM) - **CPU**: 至少拥有较高核心数和频率的处理器以辅助处理数据预取和其他非CUDA运算部分 - **RAM**: 推荐不低于 120 GB DDR5 RAM 来缓存中间状态以及加载外部存储器中的权重文件 - **Storage**: SSD 或 NVMe 类型快速读写的固态硬盘至少 180 GB 可用于临时交换空间及保存必要的依赖库 - **Software Environment** - Operating System: Ubuntu Server LTS 本, 如Ubuntu 22.04 - Python Version: Python 3.12+ - Frameworks & Libraries: PyTorch >= 2.5.1 with CUDA support enabled; torchvision; transformers library from Hugging Face ```bash # 安装Python包管理工具pipenv sudo apt install python3-pip pipenv # 创建虚拟环境并安装所需的PyTorch本和支持组件 pipenv --python 3.12 pipenv shell pipenv install torch==2.5.1+cu124 torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu124/ pipenv install transformers datasets evaluate accelerate deepspeed ``` #### 运行性能对比 当比较 DeepSeek-R1 671B 和 Qwen 2.5 72B 两个不同规模的语言模型时,前者显然更加复杂且资源消耗更大。尽管两者都基于Transformer架构构建而成,但由于其巨大的差异性——尤其是在参数数量上的差距——使得它们之间难以直接进行公平的速度或效率方面的评测。 不过一般而言,更大的模型往往能够提供更高质量的回答和服务体验;但是这也意味着更高的延迟时间和更多的能源成本支出。具体到这个案例当中,则可能表现为即使是在相同的输入条件下,DeepSeek-R1 也可能因为内部结构更为精细而表现出不同的响应速度特性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值