DeepSeek 通过发布其开源推理模型 DeepSeek-R1 颠覆了 AI 格局,该模型使用创新的强化学习技术,以极低的成本提供与 OpenAI 的 o1 相当的性能。
更令人印象深刻的是,DeepSeek 已将其推理能力提炼成几个较小的模型。这篇文章,我们将使用其蒸馏版本之一引导大家完成 DeepSeek-R1 的整个微调过程。
本文章将演示了如何微调其中一个模型(使用我们自己的自定义思维链数据集),然后保存和部署微调后的模型。
高级推理模型微调
DeepSeek 简介
DeepSeek-R1 是由深度求索(DeepSeek)公司开发的突破性推理模型。DeepSeek-R1 基于 DeepSeek-V3-Base(总共 671B 个参数,每次推理 37B 处于活动状态)构建,使用强化学习 (RL) 在提供最终答案之前生成思路链 (CoT)。
为了使这些功能更易于访问,DeepSeek 将其 R1 输出提炼成几个较小的模型:
-
基于 Qwen 的蒸馏模型:1.5B、7B、14B 和 32B
-
基于 Llama 的蒸馏模型:8B 和 70B
注意:对于 14B 模型,正确的变体是 DeepSeek-R1-Distill-Qwen-14B。
1)为什么 DeepSeek-R1 越来越受欢迎
DeepSeek-R1 因其性能、可访问性和成本效益的结合而在 AI 社区中迅速受到关注。以下是它成为开发人员和研究人员首选的原因:
-
**开源可用性:**完全开源,允许不受限制地使用、修改和分发。
-
**具有成本效益的培训:**训练成本仅为 500 万美元,仅为大型语言模型成本的一小部分。
-
**强化学习和 CoT 推理:**采用先进的强化学习技术来开发思维链推理。
-
**高效蒸馏:**Distilled 模型在资源效率高的同时保持了强大的推理能力。
-
**活跃的社区和生态系统:**不断增长的工具、微调模型和社区驱动型资源的生态系统。
2)DeepSeek-R1 与 OpenAI 的 O3-Mini-High Reasoning 模型有何不同
虽然 DeepSeek-R1 和 OpenAI 的 O3-Mini-High 推理模型都是为高级问题解决而设计的,但它们有很大的不同:
a. 开源与专有:
-
DeepSeek-R1:完全开源。
-
OpenAI O3-Mini-High:专有的,有使用限制。
b. 费用和可访问性:
-
DeepSeek-R1:培训和作成本更低。
-
OpenAI O3-Mini-High:API 费用导致运营成本较高。
c. 性能和效率:
-
DeepSeek-R1:使用 RLHF 和 CoT 推理实现高效资源使用。
-
OpenAI O3-Mini-High:封闭的自然限制了优化洞察。
d. 社区和生态系统支持:
-
DeepSeek-R1:在 Hugging Face 上通过微调模型不断壮大的社区。
-
OpenAI O3-Mini-High:通过 OpenAI 的生态系统提供强大支持,但受到专有限制的限制。
这些差异使 DeepSeek-R1 成为没有专有限制的高推理性能的有吸引力的替代方案。
下面是微调 DeepSeek-R1 以进行高级推理的完整过程。
01 环境设置和身份验证
a. 安装依赖项
使用具有 GPU 访问权限的首选环境。run:
!pip install unsloth``!pip install --force-reinstall --no-cache-dir --no-deps git+https://github.com/unslothai/unsloth.git
说明:这将安装 Unsloth,一个可加快微调速度(速度提高 2× 并减少 70% 内存使用量的框架)。
b. 登录Hugging Face和Weights & Biases
安全地检索 API Token:
from huggingface_hub import login`` ``hf_token = “your_huggingface_token”``login(hf_token)
然后,初始化权重和偏差(wandb):
import wandb`` ``wb_token = “your_wandb_token”``wandb.login(key=wb_token)``run = wandb.init(` `project='合法 COT 数据集上的 Fine-tune-DeepSeek-R1-Distill-Qwen-14B',`` job_type=“training”, `` anonymous=“allow”``)
说明: 这些步骤可确保安全的模型下载和实验跟踪。
02 加载 Model 和 Tokenizer
使用具有 4 位量化的 Unsloth 加载蒸馏的 14B 模型,DeepSeek-R1-Distill-Qwen-14B:
from unsloth import FastLanguageModel`` ``max_seq_length = 2048` `dtype = None` `load_in_4bit = True``model, tokenizer = FastLanguageModel.from_pretrained(` `model_name = “unsloth/DeepSeek-R1-Distill-Qwen-14B”,` `max_seq_length = max_seq_length,` `dtype = dtype,` `load_in_4bit = load_in_4bit,` `token = hf_token,``)
说明:为最多 2048 个 tokens 的序列配置模型,并使用 4-bit 量化来提高内存效率。
03 预微调推理
使用法律推理提示测试模型的基准性能。
定义 Prompt 并运行推理
prompt_style = """Below is an instruction that describes a task, paired with an input that provides further context.` `Write a response that appropriately completes the request.` `Before answering, think carefully about the question and create a step-by-step chain of thought to ensure a logical and accurate response.`` ``### Instruction:``You are a legal expert with advanced knowledge in legal reasoning, case analysis, and interpretation of laws.` `Please answer the following legal question.``### Question:``{}``### Response:``<think>{}"""`` ``question = "A contract was signed between two parties, but one party claims they were under duress. What legal principles apply to determine the contract's validity?"``FastLanguageModel.for_inference(model)``inputs = tokenizer([prompt_style.format(question, "")], return_tensors="pt").to("cuda")``outputs = model.generate(` `input_ids=inputs.input_ids,` `attention_mask=inputs.attention_mask,` `max_new_tokens=1200,` `use_cache=True,``)``response = tokenizer.batch_decode(outputs)``print(response[0].split("### Response:")[1])
说明:生成一个响应,其中包括模型的思路链,后跟其最终答案。
04 准备训练数据
加载并格式化数据集(这里我们使用 legal chain-of-mind 数据集)。
更新提示模板
train_prompt_style = """Below is an instruction that describes a task, paired with an input that provides further context.` `Write a response that appropriately completes the request.` `Before answering, think carefully about the question and create a step-by-step chain of thought to ensure a logical and accurate response.`` ``### Instruction:``You are a legal expert with advanced knowledge in legal reasoning, case analysis, and interpretation of laws.` `Please answer the following legal question.``### Question:``{}``### Response:``<think>``{}``</think>``{}"""``EOS_TOKEN = tokenizer.eos_token
定义 formatting 函数
def formatting_prompts_func(examples):` `inputs = examples["Question"]` `cots = examples["Complex_CoT"]` `outputs = examples["Response"]` `texts = []` `for input_text, cot, output_text in zip(inputs, cots, outputs):` `text = train_prompt_style.format(input_text, cot, output_text) + EOS_TOKEN` `texts.append(text)` `return {"text": texts}
加载和映射数据集
from datasets import load_dataset``dataset = load_dataset("kienhoang123/QR-legal", "en", split="train[0:500]", trust_remote_code=True)``dataset = dataset.map(formatting_prompts_func, batched=True)``print(dataset["text"][0])`` ``####Note: This is a pseudo dataset. Please create or use an appropriate dataset for your own use case.
说明:使用问题、详细的思路和最终答案来格式化每个训练示例,并附加 EOS 令牌。
05 设置 LoRA 以进行微调
使用 LoRA (Low-Rank Adaptation) 通过仅适配关键层来有效地微调模型:
model = FastLanguageModel.get_peft_model(` `model,` `r=16,` `target_modules=[` `"q_proj",` `"k_proj",` `"v_proj",` `"o_proj",` `"gate_proj",` `"up_proj",` `"down_proj",` `],` `lora_alpha=16,` `lora_dropout=0,` `bias="none",` `use_gradient_checkpointing="unsloth",` `random_state=3407,` `use_rslora=False,` `loftq_config=None,``)
说明:将 LoRA 适配器应用于关键投影层,从而减少微调期间的内存和计算要求。
06 配置和运行训练过程
从 TRL 初始化 SFTTrainer 以及相应的训练参数。
from trl import SFTTrainer``from transformers import TrainingArguments``from unsloth import is_bfloat16_supported`` ``trainer = SFTTrainer(` `model=model,` `tokenizer=tokenizer,` `train_dataset=dataset,` `dataset_text_field="text",` `max_seq_length=max_seq_length,` `dataset_num_proc=2,` `args=TrainingArguments(` `per_device_train_batch_size=2,` `gradient_accumulation_steps=4,` `warmup_steps=5,` `max_steps=60,` `learning_rate=2e-4,` `fp16=not is_bfloat16_supported(),` `bf16=is_bfloat16_supported(),` `logging_steps=10,` `optim="adamw_8bit",` `weight_decay=0.01,` `lr_scheduler_type="linear",` `seed=3407,` `output_dir="outputs",` `),``)
开始训练:
trainer_stats = trainer.train()
说明: 此配置使用小批量和有限的演示步骤。根据需要进行调整以进行全面微调。
07 微调后的推理
使用相同的提示结构测试微调后的模型。
question = "A contract was signed between two parties, but one party claims they were under duress. What legal principles apply to determine the contract’s validity?"`` `` ``FastLanguageModel.for_inference(model)``inputs = tokenizer([prompt_style.format(question, "")], return_tensors="pt").to("cuda")``outputs = model.generate(` `input_ids=inputs.input_ids,` `attention_mask=inputs.attention_mask,` `max_new_tokens=1200,` `use_cache=True,``)``response = tokenizer.batch_decode(outputs)``print(response[0].split("### Response:")[1])
说明: 输出应具有简洁的思路链和清晰的最终答案。
08 保存和发布微调模型
本地保存
new_model_local = "DeepSeek-R1-Legal-COT"``model.save_pretrained(new_model_local)``tokenizer.save_pretrained(new_model_local)``model.save_pretrained_merged(new_model_local, tokenizer, save_method="merged_16bit")
推送到 Hugging Face Hub
new_model_online = "yourusername/DeepSeek-R1-Legal-COT"``model.push_to_hub(new_model_online)``tokenizer.push_to_hub(new_model_online)``model.push_to_hub_merged(new_model_online, tokenizer, save_method="merged_16bit")
说明:替换为 您的实际存储库名称。合并版本集成了 LoRA 适配器,以便于部署。
“yourusername/DeepSeek-R1-Legal-COT”
09 在 Ollama 中使用微调模型
要将微调模型 DeepSeek-R1-Legal-COT 与 Ollama 结合使用,请执行以下步骤:
准备模型文件
-
确保您的微调模型以 SafeTensors 格式保存。
-
将模型文件组织到系统上的目录中。
创建 Modelfile
-
在包含模型文件的目录中,创建一个名为 (不带任何扩展名) 的文件。Modelfile
-
将以下行添加到 :Modelfile
FROM /path/to/base/model``ADAPTER .
-
替换为您在微调过程中使用的基础模型的路径。/path/to/base/model
-
该行表示适配器 (您的微调模型) 位于当前目录中。ADAPTER .
使用 Ollama 构建模型
-
打开终端并导航到包含。Modelfile
-
执行以下命令,在 Ollama 中创建模型。
ollama create deepseek-r1-legal-cot
- 此命令将构建模型并使其可在 Ollama 中使用。
运行模型
成功创建模型后,你可以使用以下方法与模型进行交互:
ollama run deepseek-r1-legal-cot
此命令允许您输入提示并接收来自微调模型的响应。
10 其他注意事项
-
型号兼容性:确保中指定的基本模型与微调期间使用的基本模型匹配,以避免出现兼容性问题。Modelfile
-
量化:如果您希望优化模型的性能,请考虑在步骤中对其进行量化。例如:ollama create
ollama create --quantize q4_K_M deepseek-r1-legal-cot
- 此命令对模型进行量化,以减少内存使用并可能提高推理速度。
有关将模型和适配器导入 Ollama 的详细信息,请参阅官方 Ollama 文档。
https://github.com/ollama/ollama/blob/main/docs/import.md
11 其他提示和建议
-
硬件设置:使用至少具有 24–32GB VRAM 的 GPU。
-
数据预处理:确保您的数据集包含字段 、 和 .“Question”“Complex_CoT”“Response”
-
超参数优化:根据数据集大小调整 和 epochs。max_steps
-
监控训练:使用 wandb 控制面板跟踪损失和指标。
-
LoRA 洞察:LoRA 仅调整关键投影层,从而减少内存使用。
-
部署:如果需要,将模型转换为 GGUF 等格式以进行本地部署。
Last but not least
DeepSeek-R1 代表了以推理为中心的 AI 的新时代。通过将高效的强化学习与监督式微调和蒸馏相结合,DeepSeek 生成的模型可与专有系统相媲美,同时具有开源性和成本效益。本指南将引导您完成每个步骤,从设置环境和加载模型,到数据准备和基于 LoRA 的微调,再到推理和部署。
对于 14B 蒸馏模型,请记住,正确的名称是 DeepSeek-R1-Distill-Qwen-14B。借助这些详细说明,我们现在可以微调和部署高性能推理模型,即使在适度的硬件上也是如此,从而为创新的 AI 应用程序铺平道路。
AI大模型学习路线
如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!
扫描下方csdn官方合作二维码获取哦!
这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
100套AI大模型商业化落地方案
大模型全套视频教程
200本大模型PDF书籍
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
LLM面试题合集
大模型产品经理资源合集
大模型项目实战合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
