大模型入门学习必备:四本书让你从新手到专家,非常详细!

无敌!大模型入门学习看这四本书足够了

大模型时代:学习的迷思与破局

当ChatGPT的惊鸿一瞥席卷全球,"大模型"不再是科技圈的专属名词,它开始渗透到日常生活的方方面面,引发了人们对未来学习的焦虑与憧憬。 市面上涌现出大量的学习资源,从入门书籍到专业课程,让人眼花缭乱。本文并非简单罗列学习资料,而是希望拨开迷雾,探讨大模型时代学习的本质,并为读者提供一条更具实践性的学习路径。

我们先从几本热门的大模型入门书籍说起。诸如《大语言模型:基础与前沿》、《从头开始构建大型语言模型》以及《大规模语言模型:从理论到实践》等书籍,都力图从不同角度解读大模型的技术原理和应用前景。这些书籍对于构建系统的知识框架无疑大有裨益,但仅仅停留在理论层面,如同纸上谈兵,难以应对瞬息万变的科技浪潮。

在这里插入图片描述

诚然,理解基础理论至关重要,但大模型的学习更应注重实践。正如《LangChain入门指南:构建高可复用、可扩展的LLM应用程序》所强调的,将理论知识转化为实际应用才是学习的关键。与其沉迷于晦涩难懂的公式和概念,不如动手搭建一个简单的应用,在实践中加深理解,提升技能。

然而,实践并非盲目尝试,更需要方法论的指导。 当前大模型学习的一大误区在于,过于强调工具和技术的掌握,而忽略了底层逻辑的思考。仅仅学会使用LangChain或其他工具并不能让你成为真正的专家,更无法应对未来可能出现的技术变革。

在这里插入图片描述

真正的学习在于培养批判性思维和创新能力。我们需要思考大模型背后的运行机制,探究其优势与局限,并尝试将其应用于解决实际问题。例如,如何利用大模型提升医疗诊断的效率?如何利用大模型辅助艺术创作?如何利用大模型优化城市交通管理?这些问题的答案并非来自书本,而是来自实践和思考。

此外,大模型时代的学习也需要更加开放和协作。技术的进步并非一蹴而就,而是无数开发者和研究者共同努力的成果。积极参与开源社区,与同行交流学习,分享经验教训,才能更快地成长进步。

在这里插入图片描述

面对信息爆炸的时代,如何高效获取知识也成为一大挑战。 传统的学习方式已经难以满足需求,我们需要更加个性化、定制化的学习路径。利用大模型自身的优势,我们可以构建智能学习助手,根据个人需求推荐学习资源,解答疑问,提供个性化指导。

学习的目的并非仅仅为了掌握知识,更在于提升自身的能力和价值。 在大模型时代,我们需要培养适应未来变化的能力,不断学习新知识,提升技能,才能在激烈的竞争中立于不败之地。

在这里插入图片描述

与其追逐热点,不如深耕基础。与其盲目模仿,不如大胆创新。与其被动接受,不如主动探索。这才是大模型时代学习的真谛。

未来已来,你准备好了吗?

与其焦虑未来,不如拥抱变化。与其固步自封,不如积极探索。与其被动等待,不如主动创造。这才是大模型时代学习的正确姿态。

从被动学习到主动创造,从知识积累到能力提升,从个体学习到群体协作,这将是大模型时代学习的变革方向。只有不断适应变化,才能在未来的浪潮中乘风破浪。

让我们共同探索,共同创造,共同迎接大模型时代的到来!

一、大模型风口已至:月薪30K+的AI岗正在批量诞生

在这里插入图片描述

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K(数据来源:BOSS直聘报告)

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

在这里插入图片描述

二、如何学习大模型 AI ?

🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值