轻松本地部署Llama、Qwen大模型:无需GPU,有手就行!

用 CPU 也能部署私有化大模型?

对,没错,只要你的电脑有个 8G 内存,你就可以轻松部署 Llama、Gemma、Qwen 等多种开源大模型。

非技术人员,安装 Docker、Docker-compose 很费劲?

不用,这些都不需要安装,就一个要求:有手就行~

今天主要为大家分享保姆级教程:如何利用普通个人电脑,本地私有化部署 Qwen 大模型。

一、Ollama 与 Qwen7B 安装和使用

一)下载

进入下载地址,目前支持 Mac、Windows、Linux 以及 docker 部署,本次演示,主要针对 Mac

下载地址:https://github.com/ollama/ollama

我已经为大家提前下载好了 Mac、Windows 的安装包,公众号回复 ollama 领取。

二)安装 Ollama

1、下载到本地,并解压后,双击 Ollama 图标。

2、点击 Move to Applications ,按照建议,将其移动到应用程序文件夹下。

3、按照从左到右的顺序执行这三步。到这 Ollama 安装完成了。

三)安装模型

作为国内的优质大模型,Qwen 对于中文的支持力度还是很强的,最终选择用它来试手。

大家也可以尝试选择自己喜欢的模型,比如 Llama3、Gemma 等等。

1、进入模型仓库

地址:https://ollama.com/library

2、搜索对应模型。发现目前有 Qwen 0.5B ~ 110B 可供使用。

因为内存不够用,最终选择下载 Qwen:7b,大家可以按照自身硬件情况下载模型。

可以使用图中对应型号的命令,进行下载。7b 下载命令为:ollama run qwen:7b

官方建议: 至少有 8 GB 可用内存来运行 7 B 型号,16 GB 来运行 13 B 型号,32 GB 来运行 33 B 型号。

3、下载完成,开始对话,中文能力的确可以~

但是命令行对话总不是事儿啊,我们需要一个网页应用,这就得请出下一位主角:ChatGPT-Next-Web

二、ChatGPT-Next-Web 安装和使用

一)安装

进入 ChatGPT-Next-Web 仓库地址,选择对应版本下载。

地址:https://github.com/ChatGPTNextWeb/ChatGPT-Next-Web/releases/tag/v2.12.4

我选择了 NextChat_2.12.4_universal.dmg

我已经为大家提前下载好了 Mac、Windows 安装包,公众号回复 ollama 领取。

下载完成后,可以直接安装,无需额外下载其他软件。

二)设置语言(可选)

按需选择语言偏好。

三)配置

1、点击图标,进行配置页面。

2、输入接口地址:http://localhost:11434

3、自定义模型名:qwen:7b

4、模型(model):qwen:7b() ,注意该选项在最下方。

四)对话测试

1、普通对话

效果还不错。

2、面具对话

使用面具对话功能时,需要注意,软件模型忽略了自定义的 qwen:7b,每次利用面具对话时,需要重新选择模型

2.1、没有选择模型时,则会出错。

2.2、点击图标,并选择正确的模型。

2.3、对话显示成功。

三、总结

没有消费级的 GPU,竟然都可以拥有自己的本地大模型。

部署过程基本上没有卡点,一台普通的 Mac 就能搞定,太香了~

随着大模型的持续爆火,各行各业都在开发搭建属于自己企业的私有化大模型,那么势必会需要大量大模型人才,同时也会带来大批量的岗位?“雷军曾说过:站在风口,猪都能飞起来”可以说现在大模型就是当下风口,是一个可以改变自身的机会,就看我们能不能抓住了。

一、大模型风口已至:月薪30K+的AI岗正在批量诞生

在这里插入图片描述

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K(数据来源:BOSS直聘报告)

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

在这里插入图片描述

二、如何学习大模型 AI ?

🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

LLAMA(Large Language Model Agent for Multi-purpose Applications)是一种基于大语言模型的应用框架,而Qwen是一个开源的语言模型,常用于问答场景。要在没有GPU的电脑上部署Qwen2,你需要通过lamma-factory进简化安装和配置。以下是大致步骤: 1. **环境准备**: - 安装Python基础环境(包括pip) - 确保已安装必要的依赖,如TensorFlow(可以选择CPU版本) ```sh pip install python==3.8 pip install numpy tensorflow-cpu ``` 2. **获取模型**: - 从GitHub或其他官方源下载预训练的Qwen模型。Llama-factory通常会提供适用于CPU的模型。 ```sh git clone https://github.com/qwen-project/qwen.git cd qwen ``` 3. **配置**: - 进入模型目录,检查`lama_factory/config.py`文件,将`device`设置为`cpu`,确保不会尝试使用GPU资源。 4. **初始化模型工厂**: ```python from lama_factory import LlamaFactory factory = LlamaFactory(config_file='lama_factory/config.yaml') ``` 5. **加载并运模型**: - 使用工厂创建Qwen实例,并在需要的时候进交互。 ```python lama = factory.create_agent() response = lama.generate_response(prompt="你好,我是Qwen") print(response) ``` 6. **处理输入和输出**: - 将用户的问题作为prompt传递给模型,接收并打印其响应。 7. **启动服务**: 如果你想构建一个本地服务供外部访问,可以使用`lama_factory.run_server()`,指定监听的端口。 注意:由于Qwen的计算需求较大,运在CPU上可能会较慢。如果对速度有较高要求,可以考虑使用更小的模型或者分布式计算。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值