LangChain4j + MCP:让你的 AI 轻松调用外部工具(内附GitHub-MCP实战)

0 前言

LangChain4j 支持模型上下文协议(MCP),用于与符合 MCP 标准的服务器通信,从而调用并执行工具。

该协议支持两种通信方式,LangChain4j 均已支持:

  • HTTP 模式:客户端通过 SSE 通道接收服务端事件,并通过 HTTP POST 请求发指令

  • stdio 模式:客户端可将 MCP 服务器作为本地子进程运行,并通过标准输入/输出与其通信

想让聊天模型或 AI 服务使用 MCP 服务器提供的工具,先得创建一个 MCP 工具提供者实例。

1 创建 MCP 工具提供者(MCP tool provider)

1.1 MCP通信方式

先要构建一个 MCP 通信方式的实例。

① stdio

以本地启动 NPM 包为例:

McpTransport transport = new StdioMcpTransport.Builder()
    .command(List.of("/usr/bin/npm", "exec", "@modelcontextprotocol/server-everything@0.6.2"))
    .logEvents(true) // 开启日志记录(可选)
    .build();
② HTTP

需要两个 URL:

  • 一个用于启动 SSE channel

  • 另一个用于通过 POST 提交命令:

McpTransport transport = new HttpMcpTransport.Builder()
    .sseUrl("http://localhost:3001/sse") // SSE 事件channel地址
    .logRequests(true) // 开启请求日志
    .logResponses(true) // 开启响应日志
    .build();

1.2 创建 MCP 客户端

代表可以通过给定的传输协议,使用服务器检索和执行工具的客户端,该客户端可以与MCP服务器通信。

使用 transport 实例创建 MCP 客户端:

McpClient mcpClient = new DefaultMcpClient.Builder()
    .transport(transport)
    .build();

1.3 创建 MCP 工具提供者

工具提供者。每次调用AI服务并为该特定调用提供工具时,都会调用它。 toolproviderresult中返回的工具将包含在对LLM的请求中。

使用 MCP 客户端创建工具提供者:

ToolProvider toolProvider = McpToolProvider.builder()
    .mcpClients(List.of(mcpClient))
    .build();

一个 MCP 工具提供者可同时用多个 MCP 客户端。如需自定义在连接某个服务器失败时行为,可 builder.failIfOneServerFails(boolean) 设置:

  • 默认 false:忽略单个服务器失败,继续使用其他服务器

  • 若置 true:任一服务器失败都会导致整个工具提供者抛异常

将工具提供者绑定到 AI 服务中,只需在构建 AI 服务时传入:

Bot bot = AiServices.builder(Bot.class)
    .chatModel(model)
    .toolProvider(toolProvider)
    .build();

2 日志功能

MCP 协议支持服务端向客户端发送日志消息。默认,客户端会将这些日志转为 SLF4J 格式输出。如想自定义日志处理逻辑,可实现 dev.langchain4j.mcp.client.logging.McpLogMessageHandler 接口,并传入客户端构造器:

McpClient mcpClient = new DefaultMcpClient.Builder()
    .transport(transport)
    .logMessageHandler(new MyLogMessageHandler()) // 自定义日志处理器
    .build();

3 资源操作

获取服务器上的 MCP 资源,使用:

  • client.listResources():返回 McpResource 列表,包含资源元数据及 URI

  • client.listResourceTemplates():获取资源模板

获取资源具体内容时,用client.readResource(uri),传入资源 URI,返回 McpReadResourceResult,其中包含一个或多个 McpResourceContents

  • McpBlobResourceContents:二进制资源

  • McpTextResourceContents:文本资源

4 提示词操作(Prompts)

获取服务器上定义的MCP 提示词,用:

  • client.listPrompts():返回提示词 McpPrompt 列表,包含名称和参数信息

  • client.getPrompt(name, arguments):渲染具体提示词内容,返回一组 McpPromptMessage,包含角色(如 userassistant)和消息内容

当前支持的消息内容类型包括:

  • McpTextContent:文本

  • McpImageContent:图像

  • McpEmbeddedResource:嵌入资源

提示词消息可用 McpPromptMessage.toChatMessage() 转为通用的 LangChain4j 消息类型 ChatMessage,但需满足:

  • role 为 assistant 时,内容须是文本,否则会抛异常

  • 包含二进制内容的消息无法转换

5 使用 Docker 运行 GitHub MCP 服务器

看一个通过 MCP 协议连接 GitHub 的示例。目标是用 LangChain4j 和 MCP 客户端获取并总结 GitHub 上公开仓库的最新提交信息。

通过 MCP 提供的 GitHub 服务器实现(见 MCP GitHub 仓库),通过 Docker 本地运行。

构建 Docker 镜像

先克隆或下载 MCP GitHub 服务器源码,进入根目录,执行以下命令构建镜像:

docker build -t mcp/github -f Dockerfile .

构建完成后,本地会生成 mcp/github 镜像:

docker image ls

REPOSITORY   TAG         IMAGE ID        SIZE
mcp/github   latest      b141704170b1    173MB

6 开发工具提供者代码示例

创建 Java 类 McpGithubToolsExample,使用 LangChain4j 连接 GitHub MCP 服务器,执行以下操作:

  • 启动 Docker 容器运行 GitHub MCP 服务器

  • 使用 stdio 通信方式连接 MCP 服务器

  • 使用语言模型总结 LangChain4j 仓库最近 3 次提交信息

★ 

⚠️ 提示:下面代码中通过环境变量 GITHUB_PERSONAL_ACCESS_TOKEN 传入 GitHub Token,访问公共仓库时可选。

获取GITHUB_PERSONAL_ACCESS_TOKEN

https://github.com/settings/personal-access-tokens/new:

图片

自己保存好:

图片

构建好的镜像:

图片

docker run --rm -d \
  --name mcp-github-server \
  -e GITHUB_PERSONAL_ACCESS_TOKEN=token \
  mcp/github
public static void main(String[] args) throws Exception {

    ChatLanguageModel model = OllamaChatModel.builder()
        .baseUrl("http://localhost:11434") // Ollama 默认本地服务地址
        .modelName("llama3-groq-tool-use:8b") // 你本地 Ollama 拉取的模型名称
        .logRequests(true)
        .logResponses(true)
        .build();

    McpTransport transport = new StdioMcpTransport.Builder()
        .command(List.of("/usr/local/bin/docker", "run", "-e", "GITHUB_PERSONAL_ACCESS_TOKEN", "-i", "mcp/github"))
        .logEvents(true)
        .build();

    McpClient mcpClient = new DefaultMcpClient.Builder()
        .transport(transport)
        .build();

    ToolProvider toolProvider = McpToolProvider.builder()
        .mcpClients(List.of(mcpClient))
        .build();

    Bot bot = AiServices.builder(Bot.class)
        .chatModel(model)
        .toolProvider(toolProvider)
        .build();

    try {
        String response = bot.chat("Summarize the last 3 commits of the LangChain4j GitHub repository");
        System.out.println("RESPONSE: " + response);
    } finally {
        mcpClient.close();
    }
}

7 执行示例代码

运行 Java 应用后,收到类似输出,总结 LangChain4j 仓库最近 3 次提交内容:

以下是 LangChain4j GitHub 仓库最近三次提交的摘要:

1. **提交 [36951f9](https://github.com/langchain4j/langchain4j/commit/36951f9649c1beacd8b9fc2d910a2e23223e0d93)**(时间:2025-02-05)
   - **作者:** Dmytro Liubarskyi
   - **信息:** 更新至 `upload-pages-artifact@v3`
   - **详情:** 此提交将上传页面资源的 GitHub Action 升级至版本 3。

2. **提交 [6fcd19f](https://github.com/langchain4j/langchain4j/commit/6fcd19f50c8393729a0878d6125b0bb1967ac055)**(时间:2025-02-05)
   - **作者:** Dmytro Liubarskyi
   - **信息:** 更新至 `checkout@v4`、`deploy-pages@v4` 和 `upload-pages-artifact@v4`
   - **详情:** 此提交升级了多个 GitHub Action 到版本 4。

3. **提交 [2e74049](https://github.com/langchain4j/langchain4j/commit/2e740495d2aa0f16ef1c05cfcc76f91aef6f6599)**(时间:2025-02-05)
   - **作者:** Dmytro Liubarskyi
   - **信息:** 更新至 `setup-node@v4` 和 `configure-pages@v4`
   - **详情:** 此提交将相关 GitHub Action 升级至版本 4。

这三次提交都由 Dmytro Liubarskyi 完成,时间相同,主要内容为将 GitHub Actions 升级至新版。

 一、大模型风口已至:月薪30K+的AI岗正在批量诞生

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

二、如何学习大模型 AI ?


🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

 

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

*   大模型 AI 能干什么?
*   大模型是怎样获得「智能」的?
*   用好 AI 的核心心法
*   大模型应用业务架构
*   大模型应用技术架构
*   代码示例:向 GPT-3.5 灌入新知识
*   提示工程的意义和核心思想
*   Prompt 典型构成
*   指令调优方法论
*   思维链和思维树
*   Prompt 攻击和防范
*   …

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

*   为什么要做 RAG
*   搭建一个简单的 ChatPDF
*   检索的基础概念
*   什么是向量表示(Embeddings)
*   向量数据库与向量检索
*   基于向量检索的 RAG
*   搭建 RAG 系统的扩展知识
*   混合检索与 RAG-Fusion 简介
*   向量模型本地部署
*   …

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

*   为什么要做 RAG
*   什么是模型
*   什么是模型训练
*   求解器 & 损失函数简介
*   小实验2:手写一个简单的神经网络并训练它
*   什么是训练/预训练/微调/轻量化微调
*   Transformer结构简介
*   轻量化微调
*   实验数据集的构建
*   …

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

*   硬件选型
*   带你了解全球大模型
*   使用国产大模型服务
*   搭建 OpenAI 代理
*   热身:基于阿里云 PAI 部署 Stable Diffusion
*   在本地计算机运行大模型
*   大模型的私有化部署
*   基于 vLLM 部署大模型
*   案例:如何优雅地在阿里云私有部署开源大模型
*   部署一套开源 LLM 项目
*   内容安全
*   互联网信息服务算法备案
*   …

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

<think>好的,用户想了解如何使用Dify的MCP SSE工具,需要教程或文档。首先,我需要确认Dify官方是否提供了相关文档。根据用户提供的引用链接,他们提到了一个GitHub仓库,里面包含基于SSE协议通信的MCP Server和Client的代码。这可能是一个实际案例或示例项目,但不确定是否属于Dify官方资源。 接下来,我应该分步骤思考如何帮助用户。首先,检查Dify的官方文档是否有关于MCP SSE工具的说明。通常,开源项目会在GitHub仓库的README或docs目录中提供文档。如果官方文档没有明确说明,可能需要引导用户参考示例代码和SSE协议的基础知识。 另外,用户提到的GitHub仓库中的代码可能是一个具体的实现案例,用户可能需要结合这个示例来理解如何在Dify中使用MCP SSE工具。需要建议用户查看该仓库的代码结构,特别是Server和Client的实现部分,以及如何配置和运行服务。 同时,应该考虑用户可能遇到的常见问题,例如环境配置、依赖安装、服务启动步骤等,需要在回答中涵盖这些方面。如果官方文档不够详细,可能需要指导用户如何通过社区或支持渠道获取进一步帮助,比如GitHub Issues或论坛。 最后,生成的相关问题需要围绕实际使用中可能遇到的挑战,比如配置问题、性能优化、与其他工具的集成等,帮助用户全面了解MCP SSE工具的应用场景和解决方法。</think>关于Dify的MCP SSE工具使用,目前官方尚未发布完整的用户文档。但根据GitHub仓库提供的代码实现,以下是主要使用步骤: ### 1. 环境准备 - 安装Python 3.8+环境 - 安装Elasticsearch 7.x+服务 - 克隆代码仓库: ```bash git clone https://github.com/cr7258/hands-on-lab.git cd ai/claude/mcp/sse/elasticsearch-mcp-sse ``` ### 2. 服务端配置 在`mcp_server.py`中配置: ```python # 配置Elasticsearch连接 es = Elasticsearch( hosts=["http://localhost:9200"], http_auth=("elastic", "your_password") ) ``` ### 3. 客户端调用 通过SSE协议建立长连接: ```python def sse_client(): headers = {'Accept': 'text/event-stream'} response = requests.get('http://localhost:5000/stream', headers=headers, stream=True) for line in response.iter_lines(): if line: print(line.decode('utf-8')) ``` ### 4. 启动服务 ```bash # 启动MCP Server python mcp_server.py # 启动客户端监听 python mcp_client.py ``` 完整代码实现可参考GitHub仓库[^1],建议结合SSE协议规范理解数据流传输机制。当前实现包含: - 实时日志推送 - 搜索建议生成 - 多客户端连接管理
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值