大模型全攻略!多模态模型学习路径,掌握AI的未来!

文章目录

前言

一、多模态模型 & 理论

1. CLIP

2. BLIP

3. BLIP2

4. InstructBLIP

二、多模态实践

1. 以 CLIP 为例

2. 以 VisualGLM 为例

三、多模态应用领域

总结

参考说明


前言

    (Frankly speaking,博主太懒了)章节一只对CLIP、BLIP、BLIP2、InstructBLIP进行了整理,章节二以CLIP、VisualGLM作为实践案例。

    实际上多模态模型除了CLIP、BLIP、BLIP2、InstructBLIP,还有LLaVA、miniGPT4,以及国内清华的VisualGLM、阿里的Qwen-VL等。(更多多模态原理可以看文末的参考说明)


一、多模态模型 & 理论

1. CLIP

图1. CLIP结构

paper: https://arxiv.org/abs/2103.00020

github: https://github.com/openai/CLIP

**基本思想:**CLIP通过大规模的图像和文本对进行对比学习,学习在特征空间中对齐文本和图像,从而理解图像内容和文本描述之间的关联。

模型结构:

  • 图像编码器:通常使用Vision Transformer (ViT) 或者其他卷积神经网络 (CNN) 如ResNet作为backbone。
  • 文本编码器:通常采用BERT或类似基于Transformer的模型。
  • 特征提取后,图像和文本特征通过归一化处理,然后通过点积计算余弦相似度,使用对比损失(info-NCE loss)进行训练。
2. BLIP

图2. BLIP结构

paper: https://arxiv.org/abs/2201.12086

github: https://github.com/salesforce/BLIP

**基本思想:**BLIP旨在通过自举方法来提升模型在视觉-语言理解和生成任务上的性能。BLIP还可以通过生成合成图像描述并使用过滤器去除噪声描述,有效地利用了网络上收集的噪声图像-文本对。

模型结构: BLIP模型采用了多模态混合编码器-解码器(Multimodal Mixture of Encoder-Decoder, MED)架构,该架构可以作为单模态编码器、图像引导的文本编码器或图像引导的文本解码器来操作。MED模型通过三种视觉-语言目标进行联合预训练:图像-文本对比学习(image-text contrastive learning)、图像-文本匹配(image-text matching)和图像条件语言建模(image-conditioned language modeling)

  • 图像编码器:使用视觉Transformer(如ViT)作为图像编码器,将输入图像分割成多个小块(patches),并将其编码为一系列嵌入向量,同时使用额外的[CLS]标记来表示整个图像的特征。
  • 文本编码器:采用BERT或类似的基于Transformer的模型作为文本编码器,在文本输入的开始处附加[CLS]标记,以汇总句子的表示。
  • 图像引导的文本编码器:在文本编码器的基础上,通过在自注意力(self-attention)层和前馈网络(feed-forward network)之间插入额外的交叉注意力(cross-attention)层来注入视觉信息。
  • 图像引导的文本解码器:替换了图像引导的文本编码器中的双向自注意力层为因果自注意力层,并使用[Decode]标记来指示序列的开始和结束。
3. BLIP2

图3. BLIP2结构

paper: https://arxiv.org/abs/2301.12597

github: https://github.com/salesforce/LAVIS/tree/main

**基本思想:**BLIP2 提出了一种通用且高效的预训练策略,利用现成的预训练图像编码器和大型语言模型来引导视觉-语言预训练。BLIP2通过一个轻量级的查询转换器(Q-Former),在两个阶段进行预训练,以弥合模态间的差距。第一阶段从冻结的图像编码器中引导视觉-语言表示学习,第二阶段从冻结的LLM中引导视觉到语言的生成学习。

BLIP2模型结构:

  • Q-Former(Querying Transformer):作为BLIP2中可训练的模块,Q-Former是一个轻量级的Transformer,它使用一组可学习的查询向量从冻结的图像编码器中提取视觉特征。Q-Former由两个Transformer子模块组成,它们共享自注意力层:一个图像Transformer用于与冻结的图像编码器交互,提取视觉特征;一个文本Transformer可以作为文本编码器和解码器,处理文本输入。
  • 冻结的图像编码器:BLIP2使用现成的预训练图像编码器(如ViT-L/14或ViT-g/14)作为视觉特征提取器。这些图像编码器在预训练过程中保持冻结状态,以减少计算成本并避免灾难性遗忘问题。
  • 冻结的大型语言模型(LLMs):BLIP-2利用预训练的大型语言模型(如OPT和FlanT5)进行文本生成。这些语言模型在预训练过程中也保持冻结状态。
  • 两阶段预训练策略:

(1)视觉-语言表示学习:在这一阶段,Q-Former连接到冻结的图像编码器,并使用图像-文本对进行预训练。目标是训练Q-Former,使其能够提取与文本最相关的视觉表示。
**(2)视觉到语言的生成学习:**在这一阶段,Q-Former连接到冻结的LLM,以利用LLM的文本生成能力。通过一个全连接层将Q-Former的输出查询嵌入投影到与LLM的文本嵌入相同的维度,然后将这些投影的查询嵌入作为视觉提示附加到输入文本嵌入的前面。

4. InstructBLIP

图4. InstructBLIP结构

paper: https://arxiv.org/abs/2305.06500

github: https://github.com/salesforce/LAVIS/tree/main/projects/instructblip

基本思想:InstructBLIP旨在通过指令调整(instruction tuning)来构建通用的视觉-语言模型,这些模型能够通过统一的自然语言接口解决广泛的视觉-语言任务。InstructBLIP基于预训练的BLIP-2模型,并通过多样化的指令数据集对多模态大型语言模型(LLM)进行训练。该框架使用了一系列公开可用的数据集,覆盖了多种任务和能力,并将它们转换为指令调整格式。InstructBLIP通过指令感知的视觉特征提取机制,使得模型能够灵活并根据给定指令提取信息性特征,从而显著提高了模型在各种视觉-语言任务上的零样本(zero-shot)泛化能力。

**模型结构:**InstructBLIP的模型结构基于BLIP2,包含以下关键组件。

  • **图像编码器:**使用预训练的图像编码器(如ViT-g/14)来提取图像特征。

  • **大型语言模型:**采用预训练的大型语言模型(如FlanT5或Vicuna),这些模型在指令调整过程中保持冻结状态。

  • **查询转换器(Q-Former):**一个轻量级的Transformer结构,用于从图像编码器中提取视觉特征。Q-Former包含一组可学习的查询嵌入,通过交叉注意力与图像编码器的输出进行交互。

  • **指令感知机制:**InstructBLIP提出了一个新颖的指令感知视觉特征提取机制。文本指令不仅提供给冻结的LLM,还提供给Q-Former,使其能够根据给定指令从冻结的图像编码器中提取视觉特征。

  • **平衡采样策略:**为了同步跨数据集的学习进度,InstructBLIP提出了一种平衡采样策略,根据数据集的大小或训练样本数量进行采样。

    InstructBLIP通过这些组件和策略,在多种视觉-语言任务上实现了最先进的零样本性能,并且在个别下游任务的微调上也取得了最先进的性能。


二、多模态实践

1. 以 CLIP 为例
import torch
import clip
from PIL import Image


# (1)配置GPU & 导入model、preprocess
device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load("ViT-B/32", device=device)

# (2)导入本地image、text
image = preprocess(Image.open("CLIP.png")).unsqueeze(0).to(device)
text = clip.tokenize(["a diagram", "a dog", "a cat"]).to(device)

# (3)通过CLIP的对比学习算出每个text和image的匹配概览
with torch.no_grad():
    image_features = model.encode_image(image)
    text_features = model.encode_text(text)
    
    logits_per_image, logits_per_text = model(image, text)
    probs = logits_per_image.softmax(dim=-1).cpu().numpy()
print("Label probs:", probs)  
# prints: [[0.9927937  0.00421068 0.00299572]]

2. 以 VisualGLM 为例(摘自 HuggingFace 官网:https://huggingface.co/THUDM/visualglm-6b

VisualGLM-6B 是一个开源的,支持图像、中文和英文的多模态对话语言模型,语言模型基于 ChatGLM-6B,具有 62 亿参数;图像部分通过训练 BLIP2-Qformer 构建起视觉模型与语言模型的桥梁,整体模型共78亿参数。

VisualGLM-6B 依靠来自于 CogView 数据集的30M高质量中文图文对,与300M经过筛选的英文图文对进行预训练,中英文权重相同。该训练方式较好地将视觉信息对齐到ChatGLM的语义空间;之后的微调阶段,模型在长视觉问答数据上训练,以生成符合人类偏好的答案。

from transformers import AutoTokenizer, AutoModel


# (1) 导入tokenizer & model
tokenizer = AutoTokenizer.from_pretrained("THUDM/visualglm-6b", trust_remote_code=True)
model = AutoModel.from_pretrained("THUDM/visualglm-6b", trust_remote_code=True).half().cuda()

# (2) 导入图片路径
image_path = "your image path"

# (3) model.chat()
response, history = model.chat(tokenizer, image_path, "描述这张图片。", history=[])
print(response)
response, history = model.chat(tokenizer, image_path, "这张图片可能是在什么场所拍摄的?", history=history)
print(response)



三、多模态应用领域

多模态模型库如下,可用于以下领域:多模态、计算机视觉、自然语言处理、强化学习、表格任务、音频任务、科学计算(蛋白子结构预测、蛋白质序列预测等)、时序技术…

以下四张图分别来自Huggingface(国外ML & DL社区)、Modelscope(阿里旗下的社区)、PaddlePaddle(百度飞桨社区)平台。


总结

章节一整理了Multi-model Large Language Models常用基座和原理,章节二以CLIP、VisualGLM为例对章节一理论进行实践。章节三展示了多模态模型库和在真实业务场景中的一些应用场景。


一、大模型风口已至:月薪30K+的AI岗正在批量诞生

在这里插入图片描述

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K(数据来源:BOSS直聘报告)

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

在这里插入图片描述

二、如何学习大模型 AI ?

🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值