DeepSeek R2 或将发布,压力给到梁文锋

大约100天前,DeepSeek R1横空出世,火爆出圈,被一向傲慢的硅谷科技圈称为“神秘东方力量”,并忧心忡忡地高呼AI领域的“斯普尼克时刻”来了。这款由中国初创公司开发的大模型,用低至600万美元的训练成本,产生足以挑战OpenAI o1的极佳性能,7天内用户数破亿,登顶美国iOS App Store免费应用榜首,更要命的是它还开源……DeepSeek种种杀伤力叠加,难怪让硅谷AI圈觉得“天塌了”。

如今,R1发布已近百日,根据行业3-4个月的版本迭代惯例来看,距离DeepSeek再次“出手”的时刻应该不远了。这股神奇又神秘的“东方力量”,能否再次为行业带来惊喜和惊艳?相信全球都在期待中。显然,此刻的压力给到了梁文锋。


01

OpenAI,慌了

1、AI一哥,也乱了分寸

时间回拨到2023年,当时的OpenAI创始人山姆奥特曼,可谓是风头无两、风光无限。彼时的OpenAI,坐拥全球最大最强的闭源大模型,GPT-4发布后,OpenAI几乎以一己之力带动数百家创业公司、数千个AI应用崛起,俨然是遥遥领先的AI界“王者”,拿着望远镜也找不到对手。

但奥特曼这种执AI之牛耳、人工智能唯我独尊的舒爽感,持续到2025年1月20日便戛然而止。原因就是来自中国的一家名不见经传的AI创业公司,石破天惊地发布了效果堪比OpenAI o1的DeepSeek R1开源大模型。

就在R1发布的当周,奥特曼在接受媒体采访时,就频频使用“令人印象深刻”、“是真正的威胁”等词语来形容对DeepSeek的感受。他的焦虑不仅仅因为DeepSeek用新技术、低成本,训练出性能卓越的大模型,更让他担心的是,DeepSeek的开源策略,将在AI生态开放性上形成新范式。

为了减少DeepSeek的冲击,OpenAI变得不再Open,还非常跌份地搞起了小动作。他们向美国政府偷偷提交了长达15页的“举报信”,声称DeepSeek R1会给美国带来“重大风险”,并呼吁美国政府对其采取封禁措施。堂堂AI一哥,竟然不顾体面,向一家新AI创业公司下黑手、使绊子,只能说DeepSeek确实足够强大,能让不可一世的OpenAI乱了分寸,慌了阵脚。

2、OpenAI更小更快了

面对来势汹汹的DeepSeek,回过神来的OpenAI除了背后捅刀子,还被逼着搞起了“应激性迭代”:此前一贯慢节奏迭代的OpenAI,以罕见的高密度先后发布了GPT-4o、O4-mini,以及包括 GPT - 4.1、GPT - 4.1 Mini、GPT - 4.1 Nano在内的GPT - 4.1 系列模型。

这些新模型几乎都有一个核心特征,就是参数规模更小、成本更低、速度更快。比如,GPT - 4.1 Mini 在多个基准测试中表现超越 GPT - 4o,大幅减少延迟并降低 83% 成本;而 GPT - 4.1 Nano 则是首个超小型模型,能支持 100 万 token 的上下文窗口,更适用于低延迟任务。

这一系列的高频更新,无疑是 OpenAI在感受到 DeepSeek这种兼具高性能与成本效益的开源大模型的竞争压力后,所采取的“防御性扩张”策略。DeepSeek不仅给整个AI行业带来了新的刺激,也让OpenAI第一次真正感受到了竞争对手“后发先至”的现实风险。


02

国内AI应用,只干了一件事

1、全面拥抱DeepSeek

在国内,自DeepSeek大模型问世以来的几个月内,AI 应用领域几乎上演了一场集体转向、“追求”DeepSeek的大戏。但凡数得上号的AI应用,似乎都在不约而同地干一件事:想尽办法上线DeepSeek R1满血版。

在搜索引擎领域,百度率先宣布将 DeepSeek R1 深度集成至文心一言底层架构,实现了多模态生成效率的大幅度提升;腾讯元宝智能创作平台接入 DeepSeek API 后,使得短视频脚本生成成本大幅降低,日均处理请求量突破百万次;阿里云则推出基于DeepSeek的云原生解决方案,能够把企业大模型部署门槛从百万级降至万元级。甚至连知乎直答、纳米 AI 搜索等垂直领域玩家,也纷纷以 “DeepSeek 满血版” 为卖点重构产品逻辑,形成了从通用技术到垂直场景的完整渗透。

这种对DeepSeek“众星捧月”般追捧背后的逻辑其实很简单:R1大模型效果更好,成本更低,而且开源透明。DeepSeek R1在多个权威评测榜单上展现出与国际顶尖闭源模型掰手腕的实力,甚至在某些特定任务上实现了超越。更关键的是,其开源的特性,以及相对更优的性能功耗比,让大家用起来觉得更放心、更踏实。

2、DeepSeek治好了,企业的“AI焦虑”

DeepSeek不仅成了国内各科技大厂的“心头好”,也成了治愈一般企业“AI焦虑”的最佳良药。过去,不少企业面对 AI,尤其是高性能大模型,常常陷入一种“高攀不起”的现实顾虑。高昂的 API 调用费用、复杂的私有化部署要求、对算力资源的巨大渴求,都让 AI 技术的规模化应用,显得遥不可及。

而DeepSeek 的出现,很好的解决了他们“既担心错过技术革命浪潮,又苦于找不到成本可控的落地路径”的尴尬。DeepSeek通过开源的方式,将强大的基础模型能力释放出来,把AI部署成本打下来,让更多无论是大型互联网公司,还是寻求 AI 赋能的传统行业,都有机会以更低的成本、更高的自主性来构建属于自己的 AI 应用。

DeepSeek将“技术普惠”的理念逐步转变为现实,将企业原本难以企及的大模型技术,转化为可复用、可负担的 “数字基建”,不仅加速了国内 AI 应用的落地进程,也在很大程度上打消了企业使用AI的后顾之忧,让他们有更大的底气,从犹豫观望,转向积极尝试。


03

梁文锋的战略定力

1、专注基础大模型研发

在这波 AI 浪潮中,我们看到了无数AI创业公司,为了生存和发展各显神通、各种尝试:有的公司急于构建应用生态,覆盖 toB 和 toC 市场;有的公司在基础模型和上层应用之间摇摆不定;有的则热衷于追逐短期热点和流量……但梁文锋和他带领的 DeepSeek,似乎显得有些格格不入,他们选择了一条更为专注,也更为艰难的道路:持续深耕基础大模型研发。

相对于其他大模型创业公司的“多元化”尝试,他们展现出了超凡的战略定力。公司成立至今,从未涉足任何应用层产品开发,即便在 R1火遍全球、获得“泼天流量”那段时间,面对多家投资机构抛出的资金合作、流量合作、技术合作等各种橄榄枝,他们也都是一一拒绝。

DeepSeek 从一开始就将目标锁定在打造世界一流的基座模型上,而不是急于将自身的技术和影响力,转化为直接的应用层产品或商业模式。梁文锋接受媒体采访时说的这段话,也许是对“DeepSeek为何如此专注且有定力”的最好回答:“过去很多年,很多的中国公司习惯了别人做技术创新,拿过来做应用变现,自己等着摩尔定律从天而降,躺在家里18个月就会出来更好的硬件和软件。我们的出发点,就不是趁机赚一笔,而是走到技术的前沿,去推动整个生态发展。中国也要逐步成为贡献者,而不是一直搭便车。”

2、或将成为AI时代的科技巨头

梁文锋和DeepSeek这种心无旁骛、执着于将资源和精力投入到模型的持续迭代和优化中的态度和精神,让K哥联想到移动互联网时代,那些最终脱颖而出的科技巨头们。

无论是字节跳动的张一鸣,早期聚焦于推荐算法和信息流产品;还是美团的王兴,在“千团大战”中坚持深耕本地生活服务;亦或是拼多多的黄峥,瞄准下沉市场和社交电商模式持续发力……他们之所以成功的最重要共同点,就是在创业初期甚至相当长的一段时间内,都表现出了对核心领域异乎寻常的专注和“长期主义”心态。他们抵制了多元化的诱惑,选择了在自己认定的“窄门”里,做到极致,成为最佳。

社会心理学中著名的“棉花糖实验”,曾为我们揭示了延迟满足的能力与未来成功的某种关联。而在商业世界,这种延迟满足则体现为一种能抵御短期诱惑、为更宏大的长期目标持续投入的战略定力。从这个角度来看,梁文锋所带领的DeepSeek,已经具备成为AI时代科技巨头的所有潜质。


04

梁文锋的主场时刻又到了

DeepSeek R1 的成功出圈,无疑为这家公司注入了强大的发展动能。尽管梁文峰和他的团队仍保持一贯的低调,但一些微妙的变化,还是透露出公司正在为下一阶段的发展积蓄力量。

比如,DeepSeek开始在招聘市场上物色CFO、COO等关键高管职位。这也被外界解读为DeepSeek正在为更大规模的融资,甚至是未来的资本市场运作做准备。毕竟,对于任何一家技术驱动型公司而言,引入经验丰富的管理人才,完善公司治理结构,都是从初创慢慢走向成熟的必经之路。

不过遗憾的是,除了这些间接信息,关于 DeepSeek 的内部运作、下一步的具体计划,外界知之甚少。而这种低调,也让市场对其即将发布的新版本充满期待:根据行业惯例和业内透露出的某些零星信息,市场普遍预期DeepSeek新版本,很可能会在5月份发布。而这无疑是梁文峰和 DeepSeek 的又一个“主场时刻”。

R1 发布距今已近百日,DeepSeek 的工程师们,这次会为我们带来哪些颠覆性的体验?让我们一边充满期待,一边祝福DeepSeek 在梁文峰的带领下,继续秉持专注与创新的精神,稳健前行,为中国的AI发展带来更多惊喜,做出更大贡献。

 

 大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书 

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。



4.LLM面试题和面经合集


这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。



👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集***

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

### 文心X1技术文档及相关资料 文心一言(通义千问系列中的文心X1)是由百度开发的大规模语言模型,其技术支持主要依赖于飞桨框架(PaddlePaddle)。以下是关于文心X1的技术文档、资料下载以及配置教程的信息。 #### 技术文档与资料下载 为了更好地理解和使用文心X1,建议从官方渠道获取最新的技术文档和参考资料。以下是一些常见的资源链接: - **官方文档**:可以访问百度飞桨官网文心一言开发者页面,查阅详细的API说明和技术指南[^1]。 - **GitHub仓库**:许多开源项目会提供完整的源码和示例脚本,帮助用户快速上手。例如,在PaddleNLP库中提供了多个预训练模型及其应用场景的实现代码[^2]。 #### 配置环境与安装教程 在本地环境中部署并运行文心X1之前,需完成必要的软件环境搭建工作。以下是具体的步骤概述: ##### 安装依赖项 确保已正确安装Python解释器,并通过pip工具安装所需的第三方库文件。对于深度学习任务而言,还需要额外引入NumPy、TensorFlow者PyTorch等相关组件来支持复杂的数值计算需求[^3]。 ```bash pip install paddlepaddle==latest_version ``` ##### 设置虚拟机操作系统 推荐采用Linux发行版作为基础平台,比如Ubuntu LTS版本号不低于20.04即可满足大多数情况下对稳定性和兼容性的追求;当然也可以考虑其他主流选项如CentOS/Debian等替代方案。 ##### 初始化API接口 如果计划调用远程服务端提供的功能,则必须先定义好认证凭证参数以便后续交互过程顺利开展下去。下面给出了一段示范性质较强的Python脚本片段用于展示如何连接至特定类型的生成式人工智能引擎实例[^4]: ```python import genai genai.configure(api_key="your_own_apikey_here", transport='rest') model = genai.GenerativeModel("gemini-1.5-flash") # 替换为目标产品名称 response = model.generate_content("Tell me about the history of artificial intelligence.") print(response.text) ``` 请注意实际操作过程中应当替换掉占位符部分的实际值以适配各自的具体情形。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值