AI Agent(智能体)被定义为能够感知环境、做出决策并采取行动的人工智能实体。受美国汽车工程师学会(SAE)提出的自动驾驶六个级别启发,在论文《Levels of AI Agents: from Rules to Large Language Models》中,作者把人工智能智能体也基于效用和强度分为以下级别:
-
L0—— 无人工智能,只有工具(具备感知能力)加上行动
-
L1—— 使用基于规则的人工智能
-
L2—— 用基于模仿学习(IL)/ 强化学习(RL)的人工智能替代基于规则的人工智能,并增加推理和决策功能
-
L3—— 用基于大型语言模型(LLM)的人工智能替代基于 IL/RL 的人工智能,另外设置记忆和反思模块
-
L4—— 在 L3 的基础上,促进自主学习和泛化
-
L5—— 在 L4 的基础上,添加个性(情感 + 性格)和协作行为(多智能体)
可以把AI Agents的五个能力级别用下图来表示,我们来对这张图做简单理解:
图中展示了AI智能体的五个级别,并从不同的维度对不同级别AI智能体的能力与性能进行了定义与描述。图表从左至右详细说明了每个级别的技术手段、性能、能力、关键特性、使用案例、以及领域的应用情况。
以下是对每个级别的简单分析和理解:
Level 0: No AI (无AI)
-
技术手段:无AI,仅基于简单的规则和操作。
-
性能:无AI,无法执行智能行为。
-
能力:无AI能力,仅执行预定义的规则和操作。
-
关键特性:无智能行为,没有自主决策能力,完全依赖于预定义的规则。
-
用例场景:无。
Level 1: Rule-Based AI + Tools (基于规则的AI + 工具)
-
技术手段:基于规则的AI与工具组合,完成简单的步骤序列。
-
性能:等同于未具备技能的初级人类。
-
能力:仅能执行按照明确步骤设定的任务。
-
关键特性:遵循预定义规则完成任务,缺乏应对变化的能力。
-
用例场景:例如使用语音助手来执行特定指令(如打开应用或读邮件)。
Level 2: IL/RL-Based AI + Tools (基于监督学习/强化学习的AI + 工具)
-
技术手段:通过监督学习和强化学习驱动,带有推理和决策能力。
-
性能:等同于具备50%技能的成年人。
-
能力:能够在用户定义的任务范围内进行推理和执行决策。
-
关键特性:可以在特定的领域中,通过数据反馈进行自动调整和改进,但范围有限。
-
用例场景:例如天气查询、简单的对话式AI,可以根据输入完成预定任务
Level 3: LLM-Based AI + Tools (基于大型语言模型的AI + 工具)
-
技术手段:基于大型语言模型(LLM),具备意图、行动、推理、决策、记忆与反思的能力。
-
性能:等同于具备90%技能的成年人。
-
能力:具备自动化任务的战略能力,可以通过工具自动规划任务并根据反馈调整执行步骤。
-
关键特性:在用户定义的任务下,能够自主完成复杂任务,具备较强的推理能力和记忆能力。
-
用例场景:AI能够自主规划并执行任务,例如通过多轮对话完成复杂的用户需求。
Level 4: LLM-Based AI + Tools + Autonomous Learning**(基于大型语言模型的AI + 工具,自主学习与泛化)**
-
技术手段:基于LLM和工具,具备自我学习、泛化和推理能力,记忆与反思进一步增强。
-
性能:等同于99%技能的成年人,接近人类顶尖专家的水平。
-
能力:能够通过上下文感知,提供高度个性化的服务,主动满足用户需求。
-
关键特性:具备深度理解和记忆功能,可以在复杂环境中提供最优解决方案或服务。
-
用例场景:个性化虚拟助手能够根据用户需求主动调整和优化行为。
Level 5: Superhuman AI (超人类AI)
-
技术手段:基于LLM与多智能体协作的AI,具备超越人类的推理、记忆、反思、自主学习和决策能力,情感、个性与协作能力也进一步发展。
-
性能:超越100%技能的成年人,展现出超人类智能。
-
能力:具备真正的数字化人格,能够在人类的角色中执行任务,确保安全与可靠性。
-
关键特性:AI能够在复杂的社交环境中代表用户完成任务,并与他人交互。
-
使用案例:能够代替用户进行交互,安全且可靠地完成复杂任务。
这里展示了AI智能体的五个级别,从最基础的规则驱动系统到潜在的超级智能,逐步提升了AI的能力和应用范围。每个级别的性能与功能均依赖于不同的技术手段,展示了AI逐渐从简单的任务自动化向复杂的、自主学习的系统发展。
本文参考:
论文:《Levels of AI Agents: from Rules to Large Language Models》
作者:Yu Huang, Roboraction.AI
链接:https://arxiv.org/pdf/2405.06643
零基础如何学习AI大模型
领取方式在文末
为什么要学习大模型?
学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。
大模型典型应用场景
①AI+教育:智能教学助手和自动评分系统使个性化教育成为可能。通过AI分析学生的学习数据,提供量身定制的学习方案,提高学习效果。
②AI+医疗:智能诊断系统和个性化医疗方案让医疗服务更加精准高效。AI可以分析医学影像,辅助医生进行早期诊断,同时根据患者数据制定个性化治疗方案。
③AI+金融:智能投顾和风险管理系统帮助投资者做出更明智的决策,并实时监控金融市场,识别潜在风险。
④AI+制造:智能制造和自动化工厂提高了生产效率和质量。通过AI技术,工厂可以实现设备预测性维护,减少停机时间。
…
这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。
学习资料领取
如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
部分资料展示
一、 AI大模型学习路线图
整个学习分为7个阶段
二、AI大模型实战案例
涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
三、视频和书籍PDF合集
从入门到进阶这里都有,跟着老师学习事半功倍。
四、LLM面试题
五、AI产品经理面试题
如果二维码失效,可以点击下方链接,一样的哦
【CSDN大礼包】最新AI大模型资源包,这里全都有!无偿分享!!!
😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~