# 数据集、代码和部署细节已在GitHub仓库中发布:``github.com/PKU-YuanGroup/ChatLaw
摘要
基于大型语言模型(LLMs)的法律助手能够提供便捷的法律咨询服务,但幻觉问题可能带来潜在的法律风险。本文介绍了Chatlaw,这是一种创新的法律助手,利用专家混合(MoE)模型和多智能体系统来提高AI驱动的法律服务的可靠性和准确性。通过将知识图谱与人工筛选相结合,我们构建了高质量的法律数据集来训练MoE模型。此模型利用不同的专家来解决各种法律问题,从而优化法律回应的准确性。另外,模仿真实律师事务所工作流程的标准作业程序(SOP)显著减少了法律服务中的错误和幻觉。我们的MoE模型在法律考试和法律专业统一资格考试中的表现优于GPT-4,展示了我们在法律咨询方面的强大能力。
增强数据集收集以覆盖全面的法律任务
为了应对现有法律数据集的缺陷,我们设计并实施了一套全面的法律数据收集和处理工作流程,成功构建了高质量的Chatlaw法律数据集。最初,我们从多个来源收集数据,并使用自动化工具进行去重和去噪处理以获得标准化的法律问答数据集。在此基础上,我们邀请法学院学生进行案件分类,并由领域专家对问题关系和节点连接进行精确定义,形成高度针对性的知识图谱和agent任务数据集。
整个数据集涉及10个大类和44个小类,总计约400万条数据样本,涵盖广泛的法律领域,包括但不限于,案件分类、法规预测、法律文书起草和子案件分割。此外,还包含公共舆论分析、命名实体识别和法律咨询等专业任务。这一多样性确保了我们的数据集能解决法律处理的各个方面,从基本的文档理解到复杂的法律推理和论证。
构建和训练MoE模型
我们的模型基于MoE Transformer架构,包含多个堆叠的MSA(多尺度注意力)模块、MoE机制和LN(层正则化)结构,并以线性分类头CLS结束。在训练阶段,我们使用自回归损失函数优化MoE模型。对于层编码,我们通过生成文本P的CLS头对输入进行变换处理。
LawBench上的性能
我们首先在LawBench上进行了测试,LawBench是一个基于中国法律系统的综合评估基准。LawBench主要涵盖三个认知层次:1)法律知识记忆:测试记忆必要法律概念、术语、条款和事实的能力;2)法律知识理解:评估大型语言模型是否能理解并解释法律文本中的实体、事件和关系;3)法律知识应用:评估正确利用并推理其法律知识以解决不同法律任务的能力。
在平均分上,我们的Chatlaw-MoE模型以60.08分显著优于GPT-4的52.35分。这一巨大差距突出表明了我们模型在不同认知层次上的有效性。
法律专业统一资格考试上的性能
另一个基准是中国法律专业统一资格考试,包括单项选择题、多项选择题和不确定选择题。这些问题涵盖各种法律领域并能有效评估大型语言模型对法律概念、原则和条款的理解和应用能力。
在2018年至2022年的法律专业统一考试中,我们的Chatlaw-MoE模型表现出色,成绩分别为113、124、143、115和78,显示出持续优越的表现。相比之下,GPT-4的得分分别为102、108、82、82和118。这一规律性的优越表现凸显了Chatlaw-MoE增强的处理法律考试题目的能力,这可能是由于其多专家系统设计,能够基于输入特征动态选择最合适的专家进行处理。
这些结果清晰地表明,Chatlaw-MoE在法律任务性能上不仅超越了专用法律模型,而且在与通用语言模型的对比中也表现优异,确立了其作为法律任务执行首选模型的地位。
Chatlaw多智能体协作框架提升法律服务可靠性
Chatlaw 包含一个基于LLM的多智能体协作系统,通过角色专门化和agent工作流模拟真实的律师咨询过程。明确的角色专门化能够将复杂工作分解为更小、更具体的任务,加速不同专业的代理相互协作。我们在我们的虚拟法律事务所中定义了四个角色:法律助理、法律研究员、法律合规、法律编辑,并指定每个角色的简档,例如角色认知、约束以及相应的知识模板和技能。
如图1©所示,代理协作工作流遵循一个顺序SOP:1)法律助理分析咨询内容并选择相应的法律知识图谱,然后询问用户问题以填充图谱节点,直到获得必要的信息;2)法律研究员基于关键信息在互联网搜索,找到相关法律条款,并根据类别分类案件以获取类似案件;3)高级律师分析相关案件并提供法律建议;4)法律编辑总结意见并起草正式法律文件,如合同,以满足用户需求。
法律助理与知识图谱
在法律专家的指导下,我们将法律咨询的过程抽象为构建专业问题知识图谱的过程。法律助理通过向用户提问,收集关键信息,扩展相应节点,直到形成完整的咨询知识图谱,作为后续过程的基础。
Chatlaw 框架中,法律助理首先根据咨询问题选择合适的预定义实体集群并初步填写信息节点。对于信息不足的节点,整合为新的问题询问用户,引导他们向知识图谱添加更多相关信息。
法律研究员与检索增强生成
法律研究员是一种基于检索增强生成(RAG)的智能体。该智能体接收由法律助理总结的知识图谱作为输入,并从外部知识库收集最新的法律条款和司法解释。利用法律助理建立的知识图谱,我们根据不同的节点关键词联合互联网和领域数据库进行检索。检索到的文档随后被并行处理,LLM评估每个文档与查询的相关性。
律师和法律编辑智能体
在实际用户咨询过程中,接下来的两个步骤涉及提供咨询建议和生成咨询文件,这在Chatlaw中由律师和法律编辑两个智能体实现。律师在咨询阶段处理用户的咨询问题和辅助信息,而编辑则专注于审查律师的文本并将其转换为最终的文档。
真实世界法律咨询表现
为了评估Chatlaw的表现,我们基于真实的司法咨询进行了综合评估,重点关注完整性、正确性、指导性和权威性等标准。Chatlaw在这些标准中始终获得最高的整体分数,特别是在完整性、指导性和权威性方面表现突出。与其他模型相比,Chatlaw在提供高质量法律咨询方面表现出优越的能力。
讨论
总体而言,Chatlaw建立了一个基于真实律师事务所实践经验的综合法律数据集,训练了一个具备精确法律咨询能力的MoE模型,并将其扩展为完整的多智能体框架。虽然AI法律助手存在着某些局限性,比如幻觉问题,但通过引入法律研究员角色,这些问题在一定程度上得到了缓解。
此外,在测试过程中,我们识别出隐私和记录保存等相关问题,因此计划加强服务的隐私保护架构,并通过各种模型压缩技术来降低计算需求。
零基础如何学习AI大模型
领取方式在文末
为什么要学习大模型?
学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。
大模型典型应用场景
①AI+教育:智能教学助手和自动评分系统使个性化教育成为可能。通过AI分析学生的学习数据,提供量身定制的学习方案,提高学习效果。
②AI+医疗:智能诊断系统和个性化医疗方案让医疗服务更加精准高效。AI可以分析医学影像,辅助医生进行早期诊断,同时根据患者数据制定个性化治疗方案。
③AI+金融:智能投顾和风险管理系统帮助投资者做出更明智的决策,并实时监控金融市场,识别潜在风险。
④AI+制造:智能制造和自动化工厂提高了生产效率和质量。通过AI技术,工厂可以实现设备预测性维护,减少停机时间。
…
这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。
学习资料领取
如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
部分资料展示
一、 AI大模型学习路线图
整个学习分为7个阶段
二、AI大模型实战案例
涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
三、视频和书籍PDF合集
从入门到进阶这里都有,跟着老师学习事半功倍。
四、LLM面试题
五、AI产品经理面试题
😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]👈