LLM多智能体系统的8种任务协作模式【下】

本文继续为大家总结基于LLM构建的多智能体系统中的8种任务协作模式。

  1. 反思模式

  2. 顺序模式

  3. 层次模式

  4. 转交模式

  5. 仿神经网络模式(MoA)

  6. 辩论模式

  7. 嵌套模式

  8. 自定义模式

5 仿神经网络模式(MoA)

【模式概述】

这种模式最初在论文《Mixture-of-Agents Enhances Large Language Model Capabilities》中被提出,也被称为MoA模式。是一种模仿前馈神经网络架构的多代理设计模式。在这种协作模式中,存在多层工作Agent(Worker Agent)以及单个的编排Agent(Orchestrator Agent),工作方式如下:

  • 编排Agent接受到用户任务,将用户交给第一层工作Agent

  • 第一层工作Agent任务完成后,将结果交给编排Agent

  • 编排Agent对任务结果进行聚合,并更新任务交给第二层工作Agent

  • 循环该过程,直至所有层次的工作Agent都完成任务

  • 最后一层的工作Agent结束后,编排Agent聚合并输出任务最终结果

这种模式的优势是:通过并行计算与分层优化,在处理复杂任务时提高效率和结果质量。

【例子】

创作一篇复杂的论文,输入是论文的主题与大纲,工作流程设计为:

  • 第一层的三个工作Agent分别负责生成论文的三个不同部分

  • 第二层的三个工作Agent对论文的三个不同部分进行润色(第一层的任务输出作为输入)

  • 第三层的三个工作Agent接收第二层的任务输出,从三个不同方面做检查与完善,如结构、语义与语言风格

  • 最后由编排Agent对第三层的结果进行聚合,并将最终结果输出

其他的一些典型场景如:

  • 代码生成:分层生成多模块代码,后续层做调试优化

  • 机器翻译:逐层翻译优化结果,最终输出流畅的表达

Mixture-of-Agents (MoA) 架构本质上也是一种分布式的任务解决方案,将输入分配给多个代理,逐层优化并整合输出。

6 辩论模式

【模式概述】

在这种模式中,Agent分为多个求解Agent(Solver Agent)与一个聚合Agent(Aggregator Agent),多个求解Agent之间通过交换“意见”来完善自身的任务结果,最后由聚合Agent负责聚合与决策输出最终结果:

  • 用户向聚合Agent输入任务

  • 聚合Agent将任务分发给所有求解Agent

  • 每个求解Agent处理任务,并向其邻居发布一个自己的结果

  • 每个求解Agent利用来自邻居的结果,优化自己的响应结果

  • 重复多次迭代过程后每个求解Agent发布自己的最终结果

  • 聚合Agent使用决策机制(如多数投票),将所有求解Agent的最终回答汇总评判,得出最终答案

在这里插入图片描述

【例子】

  • 数学问题求解

  • 复杂的逻辑推理任务,比如:

    * 律师团队Agent对法律案例做分析与交换意见,形成最后结果

    * 医疗专家Agent对医学病例做诊断并交换意见,形成最终意见

辩论模式通过多个Agent之间的相互交流,迭代改进答案,最后由聚合Agent汇总并通过投票或其他决策机制输出结果,以提供更可信更准确的任务结果。 在实际使用这种模式时,会涉及到两个设计点:

  • 聚合Agent最后的决策机制,比如多数投票或加权投票等。

7 嵌套模式

【模式概述】

顾名思义,嵌套模式就是把前面介绍的基础模式中的Agent工作流打包成一个有输入输出的单个Agent,然后参与到另外的协同模式与工作流中,这可以大大延伸与扩展现有基础模式在更复杂场景中的应用。此外,嵌套模式在工程上的意义体现在:

更有利于复杂系统的模块化设计与实施,提高模块可重用性,降低模块间的耦合度。 在一个高度复杂的多Agent系统中,可以针对单个业务功能设计独立的、不同模式的多Agent系统,最后再用“搭积木”方式去构建更大的工作流程。

【例子】

以一个多层次的AI客户服务系统为例,由于业务的复杂性,客户问题可能需要通过多层分类,最后交给具体服务的Agent来完成。比如:售后服务->产品A问题->故障报修类问题。在这个场景中,可以将一个负责产品A问题处理的转交模式的多Agent系统打包成一个Agent,然后参与到一个更大的层次模式的多Agent系统中。

显然的一个好处是:你可以让不同团队负责不同产品问题的多Agent服务系统的设计、开发、与调试评估,并发布成具有单一接口的Agent;而另一个团队则负责把这些Agent“组装”成更大的多Agent智能服务系统。

再比如,你可以让你组建的多Agent软件开发团队中的每个编码人员其实都是一个“双人结对编程小组”。

8 自定义模式

【模式概述】

如果说以上所有的模式都是可以直接描述、有固定规则的协作流程,那么最后这种模式则是一种完全自由发挥的协作模式。简单的说,就是完全根据自身需要定义的多个Agent协作的工作流程。有点类似于有着固定流程的经典RAG与可以自己选择模块并设计工作流的模块化RAG的区别。

【例子】

理论上适合所有的多Agent应用场景。

当然,自定义模式的好处是足够灵活,完全按需定制协作工作流。缺点是实现上相对复杂,所以选择成熟的框架以降低工作量是必要的,比如基于Graph定义工作流的LangGraph,或者事件驱动的LlamaIndex Workflows。

以上介绍了基于LLM的多智能体系统(MAS)中可能的任务协作模式,这些模式基于当前主流的多Agent开发框架或特性而整理。需要注意的是:不同的开发框架对这些模式的支持能力与方式并不相同。比如相对更底层的框架LangGraph/LlamaIndex Workflows功能更强大灵活,但也需要较大的开发工作量;而CrewAI与AutoGen这样天然的MAS框架则对这些模式的支持更直接与简单,但在一些场景上则缺乏一定的适应能力。

实际应用中建议根据自身需求来选择,必要时可以配合使用多个框架。

零基础如何学习AI大模型

领取方式在文末

为什么要学习大模型?

学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。

大模型典型应用场景

AI+教育:智能教学助手和自动评分系统使个性化教育成为可能。通过AI分析学生的学习数据,提供量身定制的学习方案,提高学习效果。
AI+医疗:智能诊断系统和个性化医疗方案让医疗服务更加精准高效。AI可以分析医学影像,辅助医生进行早期诊断,同时根据患者数据制定个性化治疗方案。
AI+金融:智能投顾和风险管理系统帮助投资者做出更明智的决策,并实时监控金融市场,识别潜在风险。
AI+制造:智能制造和自动化工厂提高了生产效率和质量。通过AI技术,工厂可以实现设备预测性维护,减少停机时间。

这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。

学习资料领取

如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

部分资料展示

一、 AI大模型学习路线图

整个学习分为7个阶段
在这里插入图片描述
请添加图片描述

二、AI大模型实战案例

涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

三、视频和书籍PDF合集

从入门到进阶这里都有,跟着老师学习事半功倍。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

四、LLM面试题

在这里插入图片描述
在这里插入图片描述

五、AI产品经理面试题

在这里插入图片描述

😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
在这里插入图片描述

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]👈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值