1. 背景介绍
1.1 人工智能与多智能体系统
人工智能(AI)近年来取得了显著进展,特别是在机器学习和深度学习领域。然而,大多数AI系统仍然局限于特定任务,缺乏适应新情况和持续学习的能力。多智能体系统(MAS)由多个智能体组成,通过协作和交互解决复杂问题。将AI与MAS结合,可以构建更灵活、鲁棒和可扩展的智能系统。
1.2 元学习的兴起
元学习(Meta-Learning)是一种让AI系统学会如何学习的方法。它旨在训练模型,使其能够快速适应新任务,而无需从头开始学习。元学习通过学习一系列任务的经验,提取出通用的学习策略,并在面对新任务时应用这些策略。
1.3 大型语言模型(LLM)
大型语言模型(LLM)是近年来自然语言处理(NLP)领域的一项突破性进展。LLM 经过海量文本数据的训练,能够理解和生成人类语言,并在各种NLP任务中表现出色。LLM 的强大能力使其成为构建可持续学习多智能体系统的理想选择。
2. 核心概念与联系
2.1 元学习与多智能体系统
元学