随着人工智能技术不断进步,大语言模型正在改变各行各业的运作方式。从代码生成到语言学习应用,GenAI 已经渗透到我们日常生活的方方面面。随着像上个月OpenAI的“12天”计划或谷歌的Veo 2和Imagen 3等新技术的发布,我们看到了快速的创新迭代。
面对这些变化,2025年LLM的大趋势值得我们关注。
LLM的新兴应用:不仅仅是聊天机器人
回想起最初我们用ChatGPT来生成代码或修改文本时,可能没有意识到LLM的应用前景已经大大拓展。如今,LLM不仅仅局限于对话生成,它们的应用场景已经无处不在。
例如,GPT-4 Vision不仅能“看”图像,还能理解图像内容并作出合理回应,这为AI带来了全新的应用体验。
一些令人振奋的应用案例包括:
-
• DeepScribe:这款工具通过LLM转录并分析医疗记录,帮助医生节省了大量时间,未来甚至可能通过减少医疗费用来惠及患者。
-
• Harvey AI:为律师提供法律文件搜索和总结工具,帮助他们高效处理繁杂的案件资料。
-
• Sudowrite 和 Claude:这些写作工具帮助作家根据个人偏好生成风格一致的文本,提供智能创作建议,提升创作效率。
-
• Pieces:通过管理开发者的长期记忆和工作流程历史,Pieces能够在用户忘记某些细节时提供帮助,提升工作效率。
这些只是冰山一角,随着技术的发展,LLM的应用将变得更加广泛,几乎涵盖所有行业。
本地化模型与隐私:共享未来
LLM不仅仅局限于云端运行,越来越多的模型开始支持在本地计算机上执行。这对于保护数据隐私来说至关重要。因为当AI模型在本地运行时,数据不再需要上传到云端,从而有效减少了数据泄露的风险,让用户可以更好地掌控自己的隐私。对于企业来说,这尤为关键,因为他们需要处理大量敏感的用户数据。
过去,像2018年Google+因API漏洞导致的用户数据泄露事件,就让我们深刻意识到隐私保护在技术进步中的巨大挑战。这类事件不仅损害了公司的声誉,也增加了用户对数据安全的担忧。随着本地化模型的普及,未来我们或许能够看到更多能够保障用户隐私的AI解决方案,让大家在使用AI工具时更加安心。
然而,RAG 虽然能增强生成模型的能力,但在解决企业数据权限问题方面仍面临较大挑战。如何在多层次的权限体系中确保不同用户只访问他们授权的数据,仍然是一个复杂的难题。这不仅需要技术手段的支持,也需要企业建立健全的数据权限管理体系。
小型模型的崛起:更高效、更可负担
尽管大型LLM模型,如GPT-4,凭借其强大的计算能力占据主流,但小型高效的模型正迅速崛起,逐渐引起关注。例如,LLaMA 2 7B模型虽然参数较少,但其性能接近大型模型,而且计算资源需求和运行成本大大降低。这种趋势表明,小型模型不仅可以实现高效的运算,还能在性能和成本之间找到更好的平衡。
这一转变背后,LoRA(低秩适应)技术的应用起到了关键作用。LoRA使得开发者能够在有限的计算资源下对小型模型进行微调,从而获得接近大型模型的效果。这一技术的出现,为预算有限的开发者和公司提供了新的可能性,让他们也能参与到AI技术的前沿应用中,避免了依赖昂贵硬件的困境。
与此同时,最近火出圈的杭州的DeepSeek也在这一趋势中占据了重要位置。DeepSeek是一款基于小型模型和高效算法的AI工具,它不仅提高了对搜索数据的处理效率,还大大降低了计算成本。
AI副驾驶:不仅仅是开发者的专属
LLM的功能已经不再局限于简单的对话生成,它正在向更广泛的应用领域扩展,逐渐演变成真正的“工作伙伴”。
举个例子,Pieces的目标就是打造一个类似《钢铁侠》中的Jarvis那样的AI助手,帮助用户高效地完成日常任务。通过这种AI副驾驶,用户不仅可以在工作中获得智能支持,还能更好地组织和管理自己的工作流程。它的作用不仅限于程序员,任何需要处理信息和任务的人都能从中受益。
与此同时,AI副驾驶的应用也在语言学习等领域发挥着重要作用。例如,Duolingo等语言学习平台已经开始利用LLM技术,为学习者提供个性化的AI导师。这不仅帮助用户更高效地掌握语言,还能在学习过程中提供即时反馈和指导,使学习体验更加沉浸和互动。
仍需面对的挑战:电力消耗与偏见
尽管LLM技术有诸多优点,但它们仍面临不少挑战。
首先,LLM的训练数据往往包含偏见,这可能导致模型生成带有歧视性或不准确的内容。
此外,尽管小型模型相较于大模型在计算资源上的需求有所降低,但它们的运行依然需要大量的计算能力和硬件支持,尤其对于资源有限的团队来说,依然是一大障碍。
LLM的未来:更智能、更具情境感知
2025年的LLM将迈向更加智能和具备情境感知能力的新时代,特别是在长期记忆功能的应用上。这项功能将成为新一代AI工具的标准配置,让AI不再只是基于当前的对话进行回应,而是能记住并理解用户过去的工作,提供更加个性化和精准的帮助。
举个例子,假设用户问“我最近在做什么?”,AI就能够回忆起上次的工作内容,并帮助用户快速找到未完成的任务,直接继续从上次的思路入手,显著提升工作效率。
此外,跨领域的协作将成为未来AI应用的一个重要趋势。例如,GPT-4与Imagen 3的结合能够实现文本和图像的深度整合。GPT-4理解并生成精确的文本指令,而Imagen 3则根据这些指令生成相应的图像或图形。这种跨领域协作将大大扩展AI的应用范围,从艺术创作到数据可视化等领域,甚至在医学影像分析和设计类工作中也能找到它们的身影。通过这种跨领域的合作,AI不仅能提升创意的多样性和生产力,还能更好地服务于不同行业和专业领域,推动工作流程的自动化与创新。
零基础如何学习AI大模型
领取方式在文末
为什么要学习大模型?
学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。
大模型典型应用场景
①AI+教育:智能教学助手和自动评分系统使个性化教育成为可能。通过AI分析学生的学习数据,提供量身定制的学习方案,提高学习效果。
②AI+医疗:智能诊断系统和个性化医疗方案让医疗服务更加精准高效。AI可以分析医学影像,辅助医生进行早期诊断,同时根据患者数据制定个性化治疗方案。
③AI+金融:智能投顾和风险管理系统帮助投资者做出更明智的决策,并实时监控金融市场,识别潜在风险。
④AI+制造:智能制造和自动化工厂提高了生产效率和质量。通过AI技术,工厂可以实现设备预测性维护,减少停机时间。
…
这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。
学习资料领取
如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
部分资料展示
一、 AI大模型学习路线图
整个学习分为7个阶段
二、AI大模型实战案例
涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
三、视频和书籍PDF合集
从入门到进阶这里都有,跟着老师学习事半功倍。
四、LLM面试题
五、AI产品经理面试题
😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]👈