在日常交流中,我经常遇到一个有趣的现象:很多同学在 AI 客户端 Cherry Studio 中使用了知识库的功能,会不自觉地说"我们已经用这些文档训练了模型"。这种表述虽然在日常交流中似乎无伤大雅,但实际上反映了对大模型工作原理的一个常见误解。
今天,让我们一起来澄清一下:为什么说 RAG ≠ 训练?
一、常见的误解:我在"训练"模型?
在与客户或同事沟通时,我经常听到这样的说法:
-
“我们把公司的知识库都喂给大模型训练了”
-
“这个大模型已经训练了我们的产品文档”
-
“我们用内部资料训练后,模型就能回答相关问题了”
这些表述都暗含了一个假设:将知识库中的资料传给大模型就是在"训练"模型。
然而,从技术角度来看,这是一个根本性的误解。
二、RAG 的真正工作原理
Rag Illustration
RAG(Retrieval-Augmented Generation,检索增强生成)是一种结合文档检索和文本生成的技术架构。它的核心流程是:
-
检索(Retrieval):根据用户的问题,从知识库中检索出相关的文档片段
-
增强(Augmentation):将检索到的文档片段与用户的问题合并成一个输入
-
生成(Generation):将这个"增强"后的输入传给大模型,由大模型生成回答
在这个过程中,大模型本身的参数和权重完全没有变化。知识库中的内容只是作为上下文(Context)与用户输入一起提供给模型,成为模型处理的文本的一部分。
三、训练 vs RAG:本质区别
Rag vs Training
要理解二者的区别,我们需要明确什么是真正的"训练":
训练是指通过优化算法(如反向传播)调整模型的权重参数,使模型能够学习数据中的模式和规律。训练过程通常需要:
-
大量的计算资源
-
专业的机器学习工程师
-
完整的训练流程(包括预处理、模型调优、评估等)
-
数据与标签的配对
而 RAG 则是:
-
模型参数完全不变
-
知识库内容仅作为"提示词"的一部分
-
无需重新训练或微调模型
-
可以动态更新知识库内容
四、另外一个选择:模型微调
模型微调(Model Fine-tuning)是指在预训练语言模型的基础上,使用特定领域或任务的数据对模型进行进一步训练,使其能够更好地适应特定应用场景的过程。
简单来说,微调包括以下几个关键方面:
-
起点:使用已经在大规模通用数据上预训练好的大型模型(如GPT、BERT、Claude等)作为基础。
-
过程:用针对特定任务或领域的较小数据集对预训练模型进行额外训练。
-
目的:让模型更好地理解和处理特定领域的语言、知识、任务或输出格式。
-
技术特点:通常使用较小的学习率,避免对原始能力的过度破坏,同时适应新的需求。
微调的应用场景包括:
-
让模型掌握特定行业术语和知识(如医疗、法律、金融等)
-
优化模型对特定任务的处理能力(如情感分析、文档摘要、代码生成等)
-
使模型输出符合特定风格或格式要求
-
改进模型在特定语言或方言上的表现
微调相比于纯粹的提示工程(Prompt Engineering),能够更持久、更深入地改变模型的行为,但也需要更多的技术资源和专业知识。
然而,由于模型微调的成本通常比采用提示词工程和 RAG 更高,日常 AI 业务探索中较少使用。
结语
在人工智能应用日益普及的今天,准确理解技术概念变得越来越重要。RAG 作为大模型应用的重要范式,其工作原理与传统的模型训练有着本质区别。
希望通过这篇文章的解释,能够帮助很多普通用户有一个正确理解:当我们使用 RAG 技术时,我们不是在"训练"模型,而是在利用大模型强大的上下文理解能力,通过提供相关信息来引导它生成更准确、更专业的回答。
零基础如何学习AI大模型
领取方式在文末
为什么要学习大模型?
学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。
大模型典型应用场景
①AI+教育:智能教学助手和自动评分系统使个性化教育成为可能。通过AI分析学生的学习数据,提供量身定制的学习方案,提高学习效果。
②AI+医疗:智能诊断系统和个性化医疗方案让医疗服务更加精准高效。AI可以分析医学影像,辅助医生进行早期诊断,同时根据患者数据制定个性化治疗方案。
③AI+金融:智能投顾和风险管理系统帮助投资者做出更明智的决策,并实时监控金融市场,识别潜在风险。
…
这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。
大模型就业发展前景
根据脉脉发布的《2024年度人才迁徙报告》显示,AI相关岗位的需求在2024年就已经十分强劲,TOP20热招岗位中,有5个与AI相关。
字节、阿里等多个头部公司AI人才紧缺,包括算法工程师、人工智能工程师、推荐算法、大模型算法以及自然语言处理等。
除了上述技术岗外,AI也催生除了一系列高薪非技术类岗位,如AI产品经理、产品主管等,平均月薪也达到了5-6万左右。
AI正在改变各行各业,行动力强的人,早已吃到了第一波红利。
最后
大模型很多技术干货,都可以共享给你们,如果你肯花时间沉下心去学习,它们一定能帮到你!
大模型全套学习资料领取
如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
部分资料展示
一、 AI大模型学习路线图
整个学习分为7个阶段
二、AI大模型实战案例
涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
三、视频和书籍PDF合集
从入门到进阶这里都有,跟着老师学习事半功倍。
四、LLM面试题
五、AI产品经理面试题
六、deepseek部署包+技巧大全
😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~