金融服务中的GraphRAG和标准RAG对比案例解析

摘要

本文介绍了标准RAG和GraphRAG两种信息检索增强生成技术在金融服务领域的应用,比较了它们的区别和优势,并详细阐述了如何结合两者构建端到端协同式应用来提升洞察力,例如改进灾后理赔管理。

关键要点:

* GraphRAG通过结合知识图谱,改进传统的标准RAG系统,能够处理更复杂的多跳问题,生成更全面、相关的答案。

* 标准RAG依赖向量存储检索相关文档,而GraphRAG利用知识图谱,提取实体、关系和概念来生成答案。

* GraphRAG尤其适用于需要深入理解复杂关系的场景,例如欺诈检测和知识管理。

* 在金融服务领域,结合标准RAG和GraphRAG可以显著增强洞察力,例如在银行领域提升客户关系管理和风险评估,在保险领域改进理赔流程。

* 文章提供了一个结合标准RAG和GraphRAG构建端到端协同式应用的步骤指南,以灾后理赔管理为例进行说明。

* 标准RAG擅长提供简洁的基于文档的摘要,而GraphRAG提供更详细、相互关联的洞察。

* 结合标准RAG和GraphRAG可以实现更高效的决策和战略规划。

全文

GraphRAG

GraphRAG(图形检索增强生成)是一种先进的自然语言处理方法,它通过整合大型语言模型 (LLM) 生成的来增强传统的检索增强生成(标准 RAG)系统。然后,这些节点被聚类到 中,从而为复杂的多跃点问题生成更全面、更多样化的答案。通过利用这些结构化知识图谱,GraphRAG 显著提高了生成响应的质量和相关性。

标准 RAG 和 GraphRAG 的区别

标准 RAG 和 GraphRAG 的主要区别在于它们的信息检索来源和方法。

标准 RAG 依赖于根据用户的查询检索相关文档。它对排名靠前的文档进行排名和选择,将它们与查询相结合,并使用语言模型生成最终响应。相比之下,GraphRAG 利用的包括 .它从知识图谱中提取候选实体、关系和概念,对这些候选对象进行排名和筛选,然后将它们与查询相结合以生成响应。

这种方法使 GraphRAG 能够利用更多结构化和互连的数据,与标准 RAG 以文档为中心的方法相比,提供更丰富、更符合上下文的响应。

标准 RAG 和图形 RAG 的区别

标准 RAG 和 GraphRAG 示例

这是一个简单的示例,用于演示 Standard 和 GraphRAG 之间的区别。假设您想知道保险业的最新风险。您看到了一篇题为“驾驭保险行业不断变化的风险”的麦肯锡文章,并决定分析它带来的当前挑战(驾驭保险行业不断变化的风险 |麦肯锡)。您对 Standard RAG 和 GraphRAG 如何帮助您从本文中提取信息感兴趣,尤其是在回答“保险业的共同主题是什么”之类的问题时。以下是使用 Standard RAG 和 GraphRAG 的发现。

标准RAG侧重于检索和总结相关文档,从而产生更直接、更简洁的响应。

相比之下,GraphRAG通过利用知识图谱中实体之间的关系提供更详细且互连的响应。这使它能够提供更丰富的背景,突出复杂的主题,例如相互关联的风险因素和 AI 在保险业中的整合。

标准 RAG 输出

GraphRAG 输出

如何确定 GraphRAG 用例

要确定GraphRAG(检索增强生成)的用例,首先识别复杂关系和上下文理解至关重要的领域。GraphRAG在数据点相互关联的场景中表现出色,例如知识管理、推荐系统和欺诈检测。首先绘制出您领域内的实体及其关系。例如,在保险领域,实体可以包括投保人、代理、保单和索赔,关系则代表保单和索赔交易。

接下来,评估使用图结构相较于传统方法的潜在好处。GraphRAG可以通过利用这些关系增强数据检索,提供更准确和情境相关的信息。这种方法在需要深入洞察和细致理解的领域尤其有用,例如索赔欺诈检测,在这些领域中,客户档案和索赔交易是相互关联的。通过构建知识图谱,您可以实现更复杂的查询,并生成更丰富、更具信息量的响应。

可从标准 RAG 和 GraphRAG 的组合功能中受益的使用案例

在金融服务行业,标准RAG和GraphRAG的整合可以显著增强洞察的深度和准确性。例如,在银行业,标准RAG和Graph RAG的结合可以在增强客户关系管理(CRM)和风险评估方面发挥重要作用。标准RAG可以获取大量的客户数据、交易历史和市场趋势,从而提供客户财务行为的全面视角。同时,Graph RAG可以分析客户、账户和交易之间复杂的关系网络,识别潜在风险和机会。例如,它可以检测出可能表明欺诈活动的异常交易模式,或通过理解客户之间的相互需求来突出交叉销售的机会。这种整体方法使银行能够提供更个性化的服务,改善风险管理,并最终推动更好的商业成果。

在保险行业,通过利用这些综合能力,可以彻底改革索赔处理。标准的RAG能够高效检索相关的保单文件、历史索赔数据和监管指南,而图形RAG能够绘制出涉及索赔的各个实体之间的关系,如保单持有人、医疗服务提供者和修理店。这种双重方法不仅加速了索赔裁决过程,还通过揭示传统方法可能遗漏的隐藏联系和模式,帮助识别欺诈性索赔。

使用组合RAG方法开发端到端copilot 应用程序

以下是有关如何使用组合 RAG 构建端到端 Copilot 类型应用程序的分步指南,其中包括标准 RAG 和 Graph RAG。

使用 Standard 和 Graph RAG 进行端到端应用程序开发

1. 定义用例和数据

  • 使用案例:灾后索赔管理。

  • 数据 :历史索赔、客户资料、保单详细信息、灾害影响数据、地理数据、社交网络、天气模式。

2. 创建并填充知识图谱

  • 数据收集 :从内部和外部来源收集数据。

  • 数据建模:定义实体和关系的架构。

  • 数据摄取:将数据加载到知识图谱中。

3. 索引和嵌入数据

  • 文档索引:为相关文档编制索引。

  • 嵌入创建:为实体和关系生成嵌入。

4. 设置检索系统

  • 文档检索:实现从矢量存储中检索文档的系统。

  • 图形检索:实施图形查询以提取相关实体和关系。

5. 开发排名和过滤算法

  • 文献排名:对文献进行排名并选择排名靠前的文献。

  • 图排序:对图形数据进行排名和筛选。

6. 与语言模型集成

  • 合并数据:合并从两个来源检索到的信息。

  • 响应生成:使用语言模型生成最终响应。

7. 开发用户界面

  • 前端:创建用户友好的界面。

  • 后端:确保组件之间的无缝通信。

8. 测试和验证

  • 测试场景:验证准确性和相关性。

  • 用户反馈:根据反馈优化系统。

9. 部署和监控

  • 部署 :在生产环境中部署。

  • 监控 :持续监控和改进。

示例工作流

  1. 用户查询:“在最近的飓风之后管理索赔。

  2. 文档检索:检索历史索赔、保单详细信息和灾难影响报告。

  3. 图检索:提取地理数据、社交网络和实时天气数据。

  4. 排名和筛选:确定相关信息的优先级。

  5. 响应生成:合并数据并生成全面的索赔管理计划。

  6. 输出 :提供包含以下内容的详细报表:

  • 历史索赔和保单详情。

  • 地理影响分析。

  • 社交网络洞察,用于识别受影响的社区。

  • 用于持续风险评估的实时天气数据。

  • 资源分配和加快索赔处理的建议。

通过执行这些步骤,您可以有效地实施组合 RAG 方法来加强灾后索赔管理,提供更准确且上下文更丰富的响应。

结论和下一步

总之,标准 RAG 和 GraphRAG 都提供了独特的优势,可以显着增强信息检索和生成任务。标准 RAG 擅长提供简洁、基于文档的摘要,非常适合简单的查询。另一方面,GraphRAG 利用知识图谱的强大功能提供更详细和相互关联的见解,这在金融服务领域的销售优化和欺诈检测等复杂场景中尤为有价值。

通过了解每种方法的不同功能,组织可以更好地确定何时使用 GraphRAG 来获得丰富的上下文理解,以及何时依赖标准 RAG 进行快速、相关的总结。将这些方法结合到端到端的 Copilot 应用程序中,可以将效率和洞察力提升到新的水平,从而实现更明智的决策和战略规划。正如示例和用例所展示的那样,标准 RAG 和 GraphRAG 之间的协同作用可以推动创新并改善整个行业的成果。

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

最后,感谢每一个认真阅读我文章的人,礼尚往来总是要有的,下面资料虽然不是什么很值钱的东西,如果你用得到的话可以直接拿走:

### GraphRAG与传统RAG模型的性能差异 #### 性能表现 GraphRAG相较于传统的RAG,在特定场景下表现出更为优越的性能。这是因为GraphRAG利用图结构来表示文档间的关联关系,从而增强了检索过程中的语义理解推理能力[^1]。 对于复杂的查询请求,尤其是涉及多实体间的关系推断时,GraphRAG能够提供更精准的结果匹配。而标准RAG主要依赖于文本相似度计算来进行信息检索,虽然也能有效处理大部分简单查询,但在面对复杂逻辑或跨领域知识融合的需求时可能显得力不从心[^2]。 #### 架构设计上的区别 架构层面,两者最显著的区别在于数据索引方式的不同。传统RAG采用的是扁平化的向量空间模型,即通过对大量无序文本片段进行编码形成高维特征向量,并以此为基础实现近似最近邻搜索;相比之下,GraphRAG则构建了一个由节点(代表概念/对象)及其边(表达相互作用)组成的网络拓扑结构作为底层支撑体系[^4]。 这种基于图谱的设计允许GraphRAG更好地捕捉到不同知识点之间的内在联系,进而支持更高层次的任务执行,比如因果链路挖掘、事件脉络梳理等高级认知活动。此外,由于引入了显式的连接机制,GraphRAG还可以更容易地集成外部专业知识库或者预训练好的语言理解模块,进一步提升了系统的可扩展性适应性。 ```python import torch from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration def create_rag_model(model_name='facebook/rag-token-nq'): tokenizer = RagTokenizer.from_pretrained(model_name) retriever = RagRetriever.from_pretrained(model_name) model = RagSequenceForGeneration.from_pretrained(model_name).cuda() return { 'tokenizer': tokenizer, 'retriever': retriever, 'model': model } # 创建一个简单的RAG实例用于演示目的 rag_instance = create_rag_model() print("Model created successfully.") ``` 上述代码展示了如何创建并初始化一个基础版本的RAG模型。值得注意的是,要搭建完整的GraphRAG解决方案,则需额外考虑图数据库的选择及相应的适配工作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值