现在AI这么火,你是不是也渴望能够在本地部署并运行属于自己的大模型,然而,高昂的硬件成本又往往成了一大障碍,限制了你继续在AI领域去探索和创新。如果告诉你,无需换电脑,无需额外花钱买GPU或换显卡,你现在的电脑就可以本地跑一些大模型,那将是多么酷的一件事!!!
先来强调下对于硬件的要求:基本的配置只需是Intel i5处理器 + 16G内存(内存8G也ok,但是能慢一些,但你CPU起码de得是i5的,相信这个配置对于大多数人来说还是可以满足的),你就能够顺利运行多种开源的大模型,例如33亿参数、7亿参数的模型,但是70b那种跑不起来。需要注意的是,这****里讨论的是利用大型模型进行推理,而非训练或微调模型。如果你的显卡性能更强,那么在大模型训练和微调方面的能力也会对应增强。不过,今天我们主要关注如何在现有硬件条件下运行大模型,所以重点不在此,就不详细介绍显卡相关部分了。
重点来了,这里介绍两个可以运行在本地的大模型工具:**ollama和llama.cpp,**尤其是ollama,本地跑一个大模型特别简单,后面将会重点介绍。这里还有一个小知识补充一下,无论是Ollama还是llama.cpp都是运行的量化后的模型(GGUF格式的),所以对电脑配置的要求大幅降低。
Ollama运行开源LLM
Ollama是一个轻量级且可扩展的框架,通过提供命令行界面,可以帮助用户在本地电脑上运行、创建和管理大语言模型(LLMs),整体感觉和Docker很像。
官网:https://ollama.com/
如何使用呢?很简单,下载安装后,只需在CMD命令行窗口,执行下面的命令(比如我这里启动Google刚开源的codegemma模型),就可以启动快速下载和直接运行一个大模型。
ollama run codegemma
运行后,就可以在命令行窗口进行交互了,但是整体还是不太方便,我们期待的是有个web页面可以进行交互,方便使用。
到了这里,配套的再推荐另一个开源项目:Open-webui。它可以快速基于Ollama构筑本地UI。具体使用方法可以参照官网:https://github.com/open-webui/open-webui
我们用docker命令(docker的安装和基本使用这里就不详细说明了),快速启动Open-webui,自动关联本地的ollama。
docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main
启动成功之后,访问:http://localhost:3000 我们就可以使用了。
上面简单给大家演示了,如何只用两行命令(一行是用ollama去运行一个大模型,一行是用docker启动web页面,自动关联本地ollama),基于Ollama + Open-webui去构筑本地大模型,并且可以通过web操作页面进行访问,是不是特别方便和简单。到这里,大家可能还会有下面的疑问:
问题1、ollama可以下载和运行哪些开源大模型?
可以参照网站:https://ollama.com/library 这里列出了ollama支持的开源大模型。
模型更新得很快,比如刚开源的llama3立刻就支持。并且Ollama它还允许用户通过编写Modelfile来导入更多的自定义模型,具有灵活的扩展性,并能与许多工具集成。它还支持GPU/CPU混合模式,可以根据用户的硬件配置进行优化。
问题2、ollama还有哪些常用的命令?
可以执行 ollama -h 去获取ollama支持的命令,真的很少,很简单。
问题3、ollama可以支持本地跑多个大模型吗?
必须可以,只要你电脑配置足够,同样的方法,使用ollama run 去运行你想运行的大模型。具体使用的时候,可以在open-webui提供的页面进行切换大模型即可:
问题4、为什么下载的模型要比原始模型小?
之前上面也提过,Ollma运行的是量化后的模型,将权重参数的精度压缩为4位整数精度,大幅减小了显存需求。此外,Ollama提供了对模型的量化和推理优化能力,这使得模型能够在有限计算资源下进行高效推理。
相信介绍到这里,大家都清楚了如何用ollama本地电脑玩转大模型,是不是看起来很简单,很酷。。。赶紧回去试一试吧。
-----------------
llama.cpp运行开源LLM
这个就比ollama复杂一些了,下面也简单介绍下,具体详细使用可以参照我的知识星球,里面写得很详细。
llama.cpp 是一个C++库,用于简化LLM推理的设置,它使得在本地机器上运行大模型(GGUF格式)成为可能。
官网:https://github.com/ggerganov/llama.cpp
具体如何使用呢?主要分下面这三步:
1、将项目clone到本地,然后使用make命令进行安装。
2、自行去huggingface上去找gguf格式的大模型(注意,一定是gguf格式,否则跑不起来),然后将大模型下载到本地。这里下载的过程,我推荐使用从hf-mirror镜像站中下载,速度会提升很多。大家可以参照网站:https://hf-mirror.com/
3、使用llama.cpp去运行大模型,常用的命令有./main、./server等。比如下面我用server指令去运行刚出的llama3大模型,并在web页面上进行操作。
./server -m /Users/chiliangxu/Documents/03_src/clx/ai/models/Llama-3-8B/Meta-Llama-3-8B-Instruct.Q2_K.gguf -c 2048
llama.cpp的使用比ollama复杂一些,技术门槛稍微高一些,所以对于初学者的话,我还是推荐使用ollama。但是llama.cpp方式要比ollama+open-webui方式要占用硬件资源小,自带图形页面。两者各种利弊,大家选择最合适的就好。
----------------
具体使用的过程中,如果有不明白的地方,可以参照星球或留言,也可以私信我,看到我都会第一时间答复。
相信通过上面介绍的内容,为广大开发者和研究者在硬件资源有限的情况下,降低了AI使用的门槛,可以使更多人接触到大模型,而不只是单纯使用一些别人的AI产品。如果你感兴趣,那现在是时候行动起来了。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。