智谱发布新一代基座模型

自 2023 年 3 月发布第一代语言基座模型 ChatGLM 以来,我们经过对基座模型的深入探索,在模型性能和模态上取得了显著的提升。

基于此,在KDD 2024大会上,我们发布了新一代基座模型,包括语言模型GLM-4-Plus、文生图模型CogView-3-Plus、图像/视频理解模型GLM-4V-Plus、视频生成模型 CogVideoX等,这些模型在相应领域均达到了国际第一梯队的水平。

此外,我们还在「清言APP」上线了视频通话功能,并在MaaS平台上开放了GLM-4-Flash API的免费使用。

「让机器像人一样思考」,智谱将持续前行。


主要更新:

  • 语言基座模型GLM-4-Plus: 在语言理解、指令遵循、长文本处理等方面性能得到全面提升,保持了国际领先水平。

  • 文生图基座模型 CogView-3-Plus: 具备与当前最优的 MJ-V6 和 FLUX 等模型接近的性能。

  • 图像/视频理解基座模型 GLM-4V-Plus: 具备卓越的图像理解能力,并具备基于时间感知的视频理解能力。该模型将上线开放平台(bigmodel.cn),并成为国内首个通用视频理解模型 API。

  • 视频生成基座模型 CogVideoX: 在发布并开源 2B 版本后,5B 版本也正式开源,其性能进一步增强,是当前开源视频生成模型中的最佳选择。

  • 「清言 APP」上线视频通话: 国内首个面向C端用户开放的视频通话服务,「清言 APP」的视频通话功能跨越了文本、音频和视频模态,并具备实时推理能力。

  • GLM-4-Flash API: 推理服务完全免费,并提供微调服务。


目录:

> 模型:GLM-4-Plus

> 模型:CogView-3-Plus

> 模型:GLM-4V-Plus

> 清言:视频通话

> 开源:CogVideoX

> API :GLM-4-Flash 免费

模型:GLM-4-Plus

在过去的半年中,我们针对语言模型做了大量理论研究。在此基础之上,我们研发了 GLM-4-Plus 基座模型,通过多种方式构造出了海量高质量数据,并利用 PPO等多项技术,有效提升了模型推理、指令遵循等方面的表现,并能够更好地反映人类偏好。我们在各项指标上,做到与 GPT-4o 等第一梯队模型持平。

此外,在GLM-4-Plus模型的训练过程中,我们通过采用更精准的长短文本数据混合策略,显著增强了模型在长文本推理方面的表现。

目前 GLM-4-Plus 模型已经正式上线开放平台(bigmodel.cn),对外提供 API 服务;同时也即将在「清言 APP」上线体验。

模型:CogView-3-Plus

在文生图模型的研发中,我们采用Transformer架构替代了传统的UNet架构来训练扩散模型,并深入研究了扩散模型的噪声规划。在此基础上,我们显著优化了模型效果,并验证了模型参数量提升所带来的 Scale-up效益。我们还构建了高质量的图像微调数据集,使得模型在预训练所获得的广泛知识基础上,能够生成更符合指令需求且具备更高美学评分的图像结果,其效果接近目前处于一线水平的 MJ-V6 和 FLUX 等模型。

| **Prompt:**A stone in a cave with the words ‘CogView3+’ carved on it, set in a mystical and ancient environment.

目前 CogView-3-Plus 模型已经在开放平台(bigmodel.cn)对外提供 API服务,且正式上线「清言 APP」供大家使用。

模型:GLM-4V-Plus

基于我们在 CogVLM系列模型上的研究经验,我们研发了同时具备高质量图像理解和视频理解能力的多模态模型 GLM-4V-Plus。

GLM-4V-Plus 除了能理解并分析复杂的视频内容外,同时还具备超强的时间感知能力。

目前该模型已经正式上线开放平台(bigmodel.cn),成为国内首个通用图像&视频理解模型 API。

开源:CogVideoX

智谱始终秉持将最先进的模型开源给广大开发者的理念,以推动大模型社区的繁荣发展。

为进一步促进AI视频生成社区的自主使用和开放式创新,我们在开源 CogVideoX-2B 版本后,再次开源了参数规模更大、性能更强的产品级视频生成模型 CogVideoX-5B。同时,将 CogVideoX-2B 的开源协议调整为更加开放的Apache 2.0协议。

开源仓库地址:https://github.com/thudm/cogvideo

随着CogVideoX等模型的相继开源,智谱在开源模型的数量和种类上均处于领先地位,累计下载量已突破2000万次。智谱以实际行动为国际开源社区做出了贡献。

API:GLM-4-Flash 免费

在大型模型技术持续进步的背景下,MaaS 服务正逐步迈向普及化阶段。智谱坚持「运用最先进的技术,服务最广大的用户」的宗旨,将在“速度”和“性能”两方面都具有较大优势的 GLM-4-Flash API 全面免费开放。用户可以通过调用GLM-4-Flash,快速且免费地构建专属模型和应用。这也是智谱开放平台(bigmodel.cn)首个完全免费的大模型 API。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
在这里插入图片描述

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
在这里插入图片描述

### 基座模型训练概述 在机器学习领域,基座模型(基础模型)是指那些经过预训练并可以在特定任务上进一步微调的模型。这类模型通常是在大规模数据集上预先训练好的通用表示器,在各种下游任务中表现出色[^1]。 对于初学者来说,创建和理解这些模型的过程可以通过一系列结构化的教程来实现。通过实践项目积累经验不仅有助于个人技能提升,还能为职业发展打下坚实的基础[^2]。 ### 资源推荐 #### 书籍与在线课程 - **《Deep Learning》 by Ian Goodfellow et al.** 这本书提供了有关深度神经网络及其应用方面的全面介绍,适合希望深入了解理论背景的学习者。 - **Coursera上的专项课程系列:“DeepLearning.AI TensorFlow Developer Professional Certificate”** 该证书计划涵盖了从入门到高级的主题,包括如何构建自己的图像分类器等内容。 #### 开发工具包和支持框架 - **Deeplearning4j**: 这是一个专为企业级Java应用程序设计的人工智能库,支持分布式GPU加速等功能。它允许开发者利用现有的硬件基础设施来进行高效的模型训练。 - **TensorFlow Hub 和 PyTorch Hub:** 提供了大量的预训练模型以及简单的API接口用于加载它们;这对于快速实验不同的架构非常有用。 #### 实践指南与案例研究 - **Kaggle Competitions & Datasets:** Kaggle平台拥有丰富的公开竞赛和高质量的数据集合,非常适合用来练习实际问题解决能力的同时探索不同类型的基座模型的应用场景。 - **GitHub Projects:** 许多开源社区成员会分享自己基于某些知名论文重现的结果或是改进版本,这些都是宝贵的第一手资料来源之一。 ```python import tensorflow_hub as hub from keras.models import Sequential model = Sequential([ hub.KerasLayer("https://tfhub.dev/google/imagenet/mobilenet_v2_100_224/classification/5", trainable=True), ]) ``` 上述代码展示了如何使用TensorFlow Hub加载一个MobileNetV2作为特征提取层的例子。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值