《基于大模型的RAG应用开发与优化——构建企业级LLM应用》 是一本专注于RAG(Retrieval-Augmented Generation,检索增强生成)技术应用的书籍。该书不仅为读者提供了全面深入的RAG技术知识,还注重实践性和可操作性,帮助读者快速掌握构建企业级LLM应用的能力。
一、本书推荐理由
《基于大模型的RAG应用开发与优化——构建企业级LLM应用》是一本深度与广度并重、实践导向性强、紧跟技术前沿、企业级应用视角以及易于理解和阅读的优秀书籍。它对于希望深入了解RAG技术、掌握RAG应用开发与优化技能的读者来说,具有重要的参考价值和指导意义。
-
深度与广度:本书全面解析RAG技术,同时展现其广泛应用,帮助读者深入理解并掌握。
-
实践导向:通过大量案例和代码,本书手把手教读者掌握RAG应用开发与优化技能,提升实战能力。
-
技术前沿:紧跟RAG技术最新动态,为读者提供前沿信息和灵感来源。
-
企业级视角:聚焦企业级LLM应用构建,探讨RAG在企业数字化转型和智能化升级中的重要作用。
-
易于理解:表述清晰简洁,避免过多专业术语和复杂公式,有助于读者系统学习。
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、本书主要内容
《 基于大模型的RAG应用开发与优化——构建企业级LLM应用》 全面介绍了RAG技术的基础、应用开发流程、核心技术、优化策略、企业级应用构建以及新型工作流与范式,旨在帮助读者掌握RAG应用开发的能力并构建高效的企业级LLM应用。
一、预备篇
该部分旨在帮助读者建立起对大模型与RAG的基本认识,并引导读者搭建起RAG应用开发的基础环境。这包括了对RAG技术的起源、发展、原理及优势的介绍,以及构建RAG应用开发环境所需的工具、库和框架的讲解。
二、基础篇
该部分聚焦于经典RAG应用开发的核心要素与阶段,介绍关键模块的开发过程,剖析相关的技术原理。具体内容包括:
-
RAG应用开发流程:详细阐述了从需求分析、数据准备、模型训练到应用部署的整个流程,为读者提供了一套完整的开发方案。
-
RAG核心技术:深入讲解了RAG技术中的“检索”、“生成”和“增强”等核心技术,以及这些技术的协同作用。
-
RAG应用案例:通过一些具体的RAG应用案例,展示了RAG技术在不同场景下的应用效果和价值。
三、高级篇
该部分聚焦于RAG应用开发的高阶模块与技巧,特别是在企业级RAG应用开发中的优化策略与技术实现。内容涵盖:
-
优化策略:针对RAG应用中的常见问题,如检索质量低、生成质量差等,提出了具体的优化策略和实践方法。
-
企业级应用构建:探讨了如何构建企业级LLM应用,包括架构设计、性能优化、安全性保障等方面的内容。
-
新型RAG工作流与范式:探索了一些新型的RAG工作流与范式,如模块RAG、RAG-Fusion等,旨在帮助读者了解最新的RAG应用技术发展。
三、适读人群
本书适合对大模型及RAG技术感兴趣的开发者、研究人员、产品经理及希望了解并掌握RAG应用开发能力的人阅读。无论你是进入AI领域的初学者,还是已经有一定基础的进阶者,都能从本书中找到适合自己的内容。
三、适读人群
本书适合对大模型及RAG技术感兴趣的开发者、研究人员、产品经理及希望了解并掌握RAG应用开发能力的人阅读。无论你是进入AI领域的初学者,还是已经有一定基础的进阶者,都能从本书中找到适合自己的内容。
四、书籍目录
目录
预 备 篇
第1章 了解大模型与RAG 3
1.1 初识大模型 3
1.2 了解RAG 11
1.3 RAG应用的技术架构 14
1.4 关于RAG的两个话题 20
第2章 RAG应用开发环境搭建 27
2.1 开发RAG应用的两种方式 27
2.2 RAG应用开发环境准备 33
2.3 关于本书开发环境的约定 51
【预备篇小结】 52
基 础 篇
第3章 初识RAG应用开发 55
3.1 开发一个最简单的RAG应用 55
3.2 如何跟踪与调试RAG应用 70
3.3 准备:基于LlamaIndex框架的RAG应用开发核心组件 77
第4章 模型与Prompt 78
4.1 大模型 78
4.2 Prompt 87
4.3 嵌入模型 92
第5章 数据加载与分割 100
5.1 理解两个概念:Document与Node 100
5.2 数据加载 116
5.3 数据分割 129
5.4 数据摄取管道 145
5.5 完整认识数据加载阶段 155
第6章 数据嵌入与索引 156
6.1 理解嵌入与向量 156
6.2 向量存储 158
6.3 向量存储索引 164
6.4 更多索引类型 175
第7章 检索、响应生成与RAG引擎 190
7.1 检索器 191
7.2 响应生成器 199
7.3 RAG引擎:查询引擎 214
7.4 RAG引擎:对话引擎 221
7.5 结构化输出 239
【基础篇小结】 243
高 级 篇
第8章 RAG引擎高级开发 247
8.1 检索前查询转换 247
8.2 检索后处理器 259
8.3 语义路由 272
8.4 SQL查询引擎 280
8.5 多模态文档处理 286
8.6 查询管道:编排基于Graph的RAG工作流 308
第9章 开发Data Agent 321
9.1 初步认识Data Agent 322
9.2 构造与使用Agent的工具 323
9.3 基于函数调用功能直接开发Agent 331
9.4 用框架组件开发Agent 335
9.5 更细粒度地控制Agent的运行 343
第10章 评估RAG应用 349
10.1 为什么RAG应用需要评估 349
10.2 RAG应用的评估依据与指标 350
10.3 RAG应用的评估流程与方法 351
10.4 评估检索质量 352
10.5 评估响应质量 356
10.6 基于自定义标准的评估 362
第11章 企业级RAG应用的常见优化策略 364
11.1 选择合适的知识块大小 364
11.2 分离检索阶段的知识块与生成阶段的知识块 369
11.3 优化对大文档集知识库的检索 378
11.4 使用高级检索方法 397
第12章 构建端到端的企业级RAG应用 429
12.1 对生产型RAG应用的主要考量 429
12.2 端到端的企业级RAG应用架构 430
12.3 端到端的全栈RAG应用案例 436
第13章 新型RAG范式原理与实现 478
13.1 自纠错RAG:C-RAG 478
13.2 自省式RAG:Self-RAG 485
13.3 检索树RAG:RAPTOR 507
【高级篇小结】 514
这本大模型《基于大模型的RAG应用开发与优化——构建企业级LLM应用》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
PDF书籍: 完整版本链接获取
👉[CSDN大礼包🎁:《
基于大模型的RAG应用开发与优化——构建企业级LLM应用
》免费分享(安全链接,放心点击)]👈