DeepSeek-R1模型性能对比: 32B vs 70B vs R1

01

引言

DeepSeek是梁文峰于 2023 年创立的一家中国人工智能公司,它发布的 DeepSeek-R1 模型在人工智能领域取得了长足进步。这个开源语言模型因其在推理任务中的表现而备受关注,可与 OpenAI 的 o1 等模型相媲美。值得注意的是,DeepSeek 只用了通常所需的一小部分资源就实现了这一目标,彰显了我国在人工智能技术方面的飞速进步。

在探索 DeepSeek 产品的过程中,本文评估了他们的两个型号:DeepSeek-R1-Distill-Qwen-32B和DeepSeek-R1-Distill-Llama-70B。这两个型号都可以通过此链接从 Ollama 官方网站下载。例如,如果你想下载 32B 型号,它的大小为 20GB,你只需按照本页面的说明进行操作即可。

02

**硬件配置
**

本文使用 WSL2 在 i7-14700KF 3.4GHz 处理器、32GB 内存和 NVIDIA RTX 4090 GPU 上运行了这些模型。

  • 32B 型号无需对系统进行任何修改即可顺利运行。

  • 70B 模型需要将内存设置为 24GB,在执行前使用 psutil 监控内存使用情况。

受 Matthew Berman 测试的启发,我运行了相同的测试问题集来评估这些模型,另外还增加了一些我自己的问题。虽然我在这里包含了 R1 模型的结果,但它们并不是我的本地机器取得的。

03

单词strawberry中有几个r

该问题的结果如下:

  • 32B 模型:✅正确,与 R1 的回答相似。

  • 70B 模型:✅ 正确,但不够详细。

  • DeepSeek-R1: ✅ 正确,理由详细。

04

用 Python 编写游戏贪吃蛇

该问题的结果如下:

  • 32B 模型:❌失败。蛇不吃果子。

  • 70B 模型:✅ 通过。蛇吃了果子,长大了,分数也正确更新了。

  • DeepSeek-R1: ✅ 通过,与 70B 相似。

05

用 Python 编写俄罗斯方块游戏

该问题的答案如下:

  • 32B 模型:❌失败。程序块保持静态。

  • 70B 模型:❌失败。物体块下沉,但不能正常沉降。

  • DeepSeek-R1: ✅ 绝对通过。经网上博主的测试表明,R1 生成的俄罗斯方块代码可以正常工作。

06

信封尺寸验证

邮局对可邮寄信封的尺寸有限制:最小尺寸:14 厘米 × 9 厘米。最大尺寸:32.4 厘米 × 22.9 厘米。您有一个尺寸为 200 毫米 × 275 毫米的信封。给定的信封是否在可接受的尺寸范围内?

该问题的答案如下:

  • 32B 模型:❌不正确。回答 “否”。

  • 70B 模型:✅正确。回答 “是”。并正确进行了转换,并说明了理由。

  • DeepSeek-R1: ✅ 正确。回答’是’。转换正确,并说明了理由。

07

你对这一提示的回答有多少个字?

该问题的对比如下:

  • 32B 模型:✅通过。推理与 R1 相似。

  • 70B 模型:✅ 通过。简明但正确的答案。

  • DeepSeek-R1: ✅ 通过。提供了详细的推理。

08

逻辑推理测试

一个房间里有三个杀手。有人进入房间,杀死了其中一人。没有人离开房间。房间里还剩下几个杀手?

该问题的对比如下:

  • 32B 模型:✅正确,推理与 R1 相似。

  • 70B 模型:✅推理正确,但不太详细。

  • DeepSeek-R1: ✅ 正确、高度详细的推理。

09

逻辑推理测试

提示词:在玻璃杯中放入一颗弹珠,然后把玻璃杯倒过来放在桌子上。然后把玻璃杯拿起来放进微波炉。弹珠在哪里?

该问题的对比如下:

  • 32B 模式:✅通过,理由与 R1 类似。

  • 70B 模型:✅通过,理由充分。

  • DeepSeek-R1: ✅ 通过,理由详尽。

10

逻辑推理测试

提示词:哪个数字更大:9.11 还是 9.9?

该问题的对比如下:

  • 32B 模型:✅通过,详细推理。

  • 70B 模型:通过,正确但简洁。

  • DeepSeek-R1: ✅ 通过,理由详尽。

11

结论

对以上测试进行总结,结论如下:

  • DeepSeek-R1(原版)在俄罗斯方块、贪吃蛇等编码任务和推理方面的表现明显更好。

  • 32B 模型倾向于提供更详细的推理(如 R1 原版),但在功能编码任务上却失败了。更详细的推理能力可能来自 Qwen,它是以 Qwen 为基础的一个模型(而 70B 是以 Llama 为基础的)。

  • 70B 模型在编码任务和事实正确性方面表现更好(与 32B 相比),但有时在推理方面缺乏深度。难能可贵的是,它得到的"√"几乎和 R1 模型一样多(它只在俄罗斯方块问题上失败了)。但唯一的缺点是反应速度慢。


在这里插入图片描述

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

### DeepSeek-R1 32B 和 70B 模型的主要区别 #### 参数量与模型大小 DeepSeek-R132B 版本拥有大约 320 亿个参数,对应的模型文件大小约为 75GB[^3]。相比之下,70B 版本则具有显著更多的参数数量——达到 700 亿级别,这使得其具备更强的学习能力和表达力。 #### 性能表现 随着参数规模的增长,70B 模型通常能够提供更优的语言理解和生成能力,在复杂的自然语言处理任务上展现出更高的准确性和流畅度。然而,这种提升并非线性的;对于某些特定的任务或领域内问题,较小规模的 32B 模型也可能表现出足够的竞争力甚至更好的性价比[^4]。 #### 应用场景 - **32B 模型**:适用于大多数常规的企业级应用需求,比如客服聊天机器人、文档摘要提取等。这类模型可以在配备 NVIDIA A10 或 A100 显卡的工作站环境中高效运行,满足中大型企业的日常业务需求。 - **70B 模型**:更适合用于政府级别的舆情监控系统以及科研机构中的高级计算任务,例如蛋白质结构预测等领域前沿的研究工作。由于所需硬件配置较高(如专业 GPU 集群),因此更多地被限定于资金和技术实力雄厚的大企业和研究单位内部使用。 #### 训练与推理成本 更大的参数规模意味着更高的训练开销和更为昂贵的推理费用。70B 模型不仅需要更长时间来完成一次完整的迭代训练过程,而且每次请求响应时也会消耗更多的计算资源。相反,32B 模型在这方面显得更加经济实惠,尤其当目标是在保持一定精度的同时降低运营成本时[^1]。 ```python # Python伪代码展示两个版本间的简单比较方式 def compare_models(model_32b, model_70b): print(f"Model Size Comparison:") print(f"- Parameters (32B): {model_32b['params']} billion") print(f"- File Size (32B): ~{model_32b['file_size']} GB") print(f"\nPerformance Metrics:") # 这里可以加入具体的性能指标对比逻辑 print("\nUse Cases Suitability:") print("- Suitable for general enterprise applications.") print("- Ideal for advanced research and government-level systems.") compare_models( {"params": 32, "file_size": 75}, {"params": 70} ) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值