LLM在金融交易领域的实际应用:FinRobot开源平台的创新突破

「编者按」随着人工智能技术的飞速发展,大语言模型(LLM)在金融交易领域的应用正逐渐从理论走向实践。本文将带您深入了解一款名为FinRobot 的开源AI智能体平台,该平台旨在通过整合LLM为金融交易和决策提供强大的支持。小编将带您深入解读FinRobot平台的核心技术、应用场景以及其在金融领域的创新实践,并附上论文的核心代码及注解。

 

一、引言

金融分析通常涉及解读市场趋势、预测经济结果并提供投资策略,先于金融决策。股票分析可以分为两类,基本面分析研究公司并给出估值,而技术分析则研究市场行为以预测未来价格走势。

依托大语言模型(LLMs),智能体已经发展出利用这些模型执行一系列复杂功能的能力,包括计划、内存管理以及工具使用。最近的人工智能智能体应用,例如用于交易的 FinAgent 和用于金融决策的 FinMem,突显了这些技术在执行复杂金融操作方面日益增长的依赖性。尽管这些技术取得了显著进步,但仍存在若干关键挑战未得到解决:

  • 透明度提升:AI 智能体驱动的金融分析平台可以通过何种方式改进其决策过程的透明度,以增强用户信任?

  • 全球市场适应性:AI 智能体如何有效适应全球股票市场的多语言和多元文化特征,以确保全面和准确的市场分析?

  • 模型多样性:仅依赖单一的 LLM 架构(如 GPT-4)进行复杂金融分析存在哪些局限性?如何通过多样化模型架构提升性能?

  • 实时数据处理:AI 智能体平台如何高效管理和路由大量金融数据,以确保及时和精确的金融分析?

本文提出了 FinRobot,一种利用多源 LLM 进行各种金融任务的开源人工智能智能体平台。FinRobot 优化了从数据处理到策略实施的金融工作流程,扩大了高级分析工具的访问范围,增强了可扩展性和透明度。

二、平台架构

图片

FinRobot 的整体框架组织成四个不同的层,每个层旨在解决金融 AI 处理和应用中的特定问题:

1、金融 AI 智能体层:金融 AI 智能体层现在包括金融思维链 (CoT) 提示,增强了复杂的分析和决策能力。市场预测代理、文档分析代理和交易策略代理利用 CoT 将财务挑战分解为合乎逻辑的步骤,将其高级算法和领域专业知识与不断变化的金融市场动态保持一致,以获得准确、可作的见解。

2、金融 LLM 算法层:金融 LLM 算法层配置和利用针对特定领域和全球市场分析量身定制的专门调整的模型。

3、LLMOps 和 DataOps 层:LLMOps 层实施多源集成策略,利用一系列最先进的模型为特定财务任务选择最合适的 LLM。

4、多源 LLM 基础模型层:此基础层支持各种通用和专用 LLM 的即插即用功能。

图片

金融智能体工作流图

上图展示了金融智能体(Financial Agent)的工作流图。金融 AI 智能体层包括专门针对增强金融分析而设计的高级数据感知、认知处理和动态行动执行的领域特定 AI 智能体:

  • 感知模块(Perception):通过使用复杂的技术从市场数据、新闻和经济指标中捕获和解释多模态金融数据,并将数据结构化以进行深入分析。

  • 大脑模块(Brain):作为核心处理单元,利用大型语言模型(LLMs)感知来自感知模块的数据,并运用金融思维链(CoT)过程生成结构化的指令。

  • 执行模块(Action): 执行大脑模块生成的指令,利用工具将分析洞察转化为可操作的结果,包括交易、调整投资组合、生成报告或发送警报,从而积极影响金融环境。

在处理复杂金融数据集并确保高水准的分析准确性和深度方面,部署多智能体工作流系统具有显著优势。该系统集成了多个专业角色,这些角色协同工作,处理、分析并从多种金融数据源中提取可操作的洞察。

金融智能体角色

1、领导者(Director):作为项目的战略领导者,负责监控工作流的所有方面。该角色涉及优先处理金融任务、分配资源以及协调团队努力以优化分析时间线和结果。

2、助理(Assistant):专注于初始数据管理任务,如收集、处理和进行初步分析,并促进智能体之间的沟通。该角色通过准备数据集、维护数据库以及执行基本的金融计算和可视化来支持更专业的分析师。

3、LLM分析师(LLM Analyst):利用先进的计算技术分析金融文本,如报告、提交文件和新闻文章。这一角色对于从定性数据中提取详细见解、进行情感分析以及预测市场趋势至关重要。

4、金融分析师(FinAnalyst):在 LLM 分析师的指导下,针对各种领域(如投资组合管理、风险评估和市场分析)进行详细的定量数据分析。利用统计工具和金融模型,解释数据、评估投资机会并制定风险缓解策略。

三、技术细节与创新点

1、金融链式思维(CoT)

FinRobot引入了金融链式思维(CoT)技术,通过结构化的提示引导AI模型进行逐步推理,模仿人类专家的决策过程。这种方法不仅提高了模型在复杂推理任务中的准确性,还增强了决策过程的可解释性和透明度。

2、多源LLM集成

FinRobot支持多源LLM的集成,允许平台根据任务需求动态选择最优模型。这种设计不仅提高了模型的适应性和灵活性,还支持多语言模型的集成,增强了平台在全球市场的适用性。

3、实时数据处理

FinRobot通过LLMOps和DataOps层优化了数据处理流程,确保数据的高质量和实时性。这使得平台能够高效管理和路由大量金融数据,为实时金融分析提供支持。

四、核心代码及注解

以下是FinRobot平台的核心代码示例,展示了如何利用LLM进行金融文本分析和情绪预测:

import torchfrom transformers import AutoTokenizer, AutoModelForSequenceClassification
# 加载预训练的LLM模型和分词器tokenizer = AutoTokenizer.from_pretrained("yiyanghkust/finbert-tone")model = AutoModelForSequenceClassification.from_pretrained("yiyanghkust/finbert-tone")
# 示例金融新闻文本news_text = "公司发布财报,营收增长10%,超出市场预期。"
# 对文本进行编码inputs = tokenizer(news_text, return_tensors="pt", truncation=True, padding=True)
# 获取模型的预测结果with torch.no_grad():    outputs = model(**inputs)
# 解析预测结果predictions = torch.argmax(outputs.logits, dim=1)emotion = "Positive" if predictions.item() == 1 else "Negative"
print(f"News Text: {news_text}")print(f"Predicted Emotion: {emotion}")

代码注解:

1、加载预训练模型和分词器:使用AutoTokenizer 和AutoModelForSequenceClassification 加载预训练的FinBERT模型

2、文本编码:将金融新闻文本 转换为模型可处理的输入格式

3、模型预测:通过模型获取预测结果,判断新闻文本的情绪倾向

4、结果解析:根据预测结果输出情绪标签(正面或负面)

图片

五、应用场景

FinRobot在多个金融场景中展现出强大的应用潜力:

1、市场情绪分析:FinRobot能够实时分析金融新闻和社交媒体中的情绪倾向,为交易者提供情绪指标。例如,通过情感分析技术,平台可以快速判断市场对某家上市公司财报的反应,帮助交易者做出更明智的决策。

2、投资策略生成:FinRobot利用LLM生成投资策略,支持动态调整和优化。例如,平台可以根据市场动态和历史数据生成买入或卖出策略,并实时反馈策略的执行结果。

3、风险预警:FinRobot通过分析市场新闻和公司公告中的负面信息,提前预警潜在风险。例如,当某家上市公司被爆出负面新闻时,平台可以迅速发出预警信号,提醒交易者关注该公司的风险。

图片

六、总结与展望

FinRobot通过整合多源LLM,为金融交易和决策提供了一个强大的开源平台。它不仅优化了金融工作流程,还增强了分析工具的透明度和可访问性。未来,FinRobot计划扩展其应用范围,包括投资组合配置和全面风险评估,进一步推动AI驱动的金融分析的创新与普及。

LLM正成为金融交易中的“读心术”,通过解析文本中的情绪倾向,帮助交易者提前感知市场脉搏、做出更明智的决策,并提前发现潜在风险。未来,LLM将与更多技术结合,为金融交易带来更多的创新和突破。让我们拭目以待,LLM将如何继续改变金融交易的未来。

 

 如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。


1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值