RAG快速落地-阿里云百炼

大模型在最近两年特别火,相信大家或多或少都听说过,那么大模型落地的应用场景,个人觉得RAG是现在能落地的应用场景之一

LLM的局限性

将大模型应用于实际业务场景时会发现,通用的基础大模型基本无法满足我们的实际业务需求,主要有以下几方面原因

  1. 知识的局限性:大模型对于一些实时性的、非公开的或离线的数据是无法获取到的。
  2. LLM可能不知道你私有的领域/业务知识
  3. LLM有时会在回答中生成看似合理但实际上是错误的信息

为什么会用到RAG

  1. 提高准确性: 通过检索相关的信息,RAG可以提高生成文本的准确性。
  2. 减少训练成本:与需要大量数据来训练的大型生成模型相比,RAG可以通过检索机制来减少所需的训练数据量,从而降低训练成本。
  3. 适应性强:RAG模型可以适应新的或不断变化的数据。由于它们能够检索最新的信息,因此在新数据和事件出现时,它们能够快速适应并生成相关的文本。

RAG概念

RAG(Retrieval Augmented Generation)顾名思义,通过检索外部数据,增强大模型的生成效果

RAG即检索增强生成,为LLM提供了从某些数据源检索到的信息,并基于此修正生成的答案。RAG 基本上是Search + LLM 提示,可以通过大模型回答查询,并将搜索算法所找到的信息作为大模型的上下文。查询和检索到的上下文都会被注入到发送到 LLM 的提示语中。

如果大家想体验RAG的效果,可以用扣子这个平台,也是非常的简单,基本上传文件就可以了,没有任何难度

阿里云百炼

这里我就不介绍向量和Embeddings了,包括向量数据库这些,如果想深入了解RAG,那么这部分内容大家可以去看看别的文章,本文主要给大家介绍-阿里云百炼这个平台,如何快速完成RAG

百炼网站:https://bailian.console.aliyun.com/#/home

首先登录阿里云百炼平台,创建一个应用

在这里插入图片描述

然后把文档上传上去

在这里插入图片描述

点击应用的管理,将我们上传的文档加载到这个应用里面,我这里没有写的特别详细,这都是界面,相信大家只要操作一下就能弄懂

基本就是创建一个应用,上传文件,创建数据索引(切片),然后将上传的数据配置到应用的知识库中,就是这么简单…

接下来就可以测试了

在这里插入图片描述

如果我们想利用代码去调用也是可以的

from http import HTTPStatus
from dashscope import Application


def call_agent_app():
    response = Application.call(app_id='换成自己的',
                                prompt='Introduce the capital of China',
                                api_key='申请一个就行',)

    if response.status_code != HTTPStatus.OK:
        print('request_id=%s, code=%s, message=%s\n' % (response.request_id, response.status_code, response.message))
    else:
        print('request_id=%s\n output=%s\n usage=%s\n' % (response.request_id, response.output, response.usage))


if __name__ == '__main__':
    call_agent_app()

prompt可以换成自己问的问题,也可以用streamlit简单写个界面,这样就完成了一个套壳百炼的RAG

import streamlit as st
from http import HTTPStatus
from dashscope import Application


# 定义调用代理应用的函数
def call_agent_app(prompt):
    response = Application.call(app_id='xxx',
                                prompt=prompt,
                                api_key='xxx')

    return response


# Streamlit 应用
def main():
    st.title("与代理应用交互")

    # 创建表单
    with st.form(key="user_input_form"):
        # 用户输入框
        user_prompt = st.text_input("请输入您的问题:", "llama2有多少参数")

        # 隐藏提交按钮,敲回车即可提交
        submit_button = st.form_submit_button(label="提交")

    if submit_button:
        if user_prompt:
            # 调用代理应用
            response = call_agent_app(user_prompt)

            # 检查响应状态
            if response.status_code != HTTPStatus.OK:
                st.error(
                    f'请求失败: request_id={response.request_id}, code={response.status_code}, message={response.message}')
            else:
                # st.success(f'请求成功: request_id={response.request_id}')
                st.write(f'输出: {response.output.text}')
                st.write(f'使用模型: {response.usage.models[0].model_id},输入token: {response.usage.models[0].input_tokens}, 输出token: {response.usage.models[0].output_tokens}')
        else:
            st.warning("请输入有效的问题!")


if __name__ == '__main__':
    main()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值