大模型在最近两年特别火,相信大家或多或少都听说过,那么大模型落地的应用场景,个人觉得RAG是现在能落地的应用场景之一
LLM的局限性
将大模型应用于实际业务场景时会发现,通用的基础大模型基本无法满足我们的实际业务需求,主要有以下几方面原因
- 知识的局限性:大模型对于一些实时性的、非公开的或离线的数据是无法获取到的。
- LLM可能不知道你私有的领域/业务知识
- LLM有时会在回答中生成看似合理但实际上是错误的信息
为什么会用到RAG
- 提高准确性: 通过检索相关的信息,RAG可以提高生成文本的准确性。
- 减少训练成本:与需要大量数据来训练的大型生成模型相比,RAG可以通过检索机制来减少所需的训练数据量,从而降低训练成本。
- 适应性强:RAG模型可以适应新的或不断变化的数据。由于它们能够检索最新的信息,因此在新数据和事件出现时,它们能够快速适应并生成相关的文本。
RAG概念
RAG(Retrieval Augmented Generation)顾名思义,通过检索外部数据,增强大模型的生成效果
RAG即检索增强生成,为LLM提供了从某些数据源检索到的信息,并基于此修正生成的答案。RAG 基本上是Search + LLM 提示,可以通过大模型回答查询,并将搜索算法所找到的信息作为大模型的上下文。查询和检索到的上下文都会被注入到发送到 LLM 的提示语中。
如果大家想体验RAG的效果,可以用扣子这个平台,也是非常的简单,基本上传文件就可以了,没有任何难度
阿里云百炼
这里我就不介绍向量和Embeddings了,包括向量数据库这些,如果想深入了解RAG,那么这部分内容大家可以去看看别的文章,本文主要给大家介绍-阿里云百炼这个平台,如何快速完成RAG
百炼网站:https://bailian.console.aliyun.com/#/home
首先登录阿里云百炼平台,创建一个应用
然后把文档上传上去
点击应用的管理,将我们上传的文档加载到这个应用里面,我这里没有写的特别详细,这都是界面,相信大家只要操作一下就能弄懂
基本就是创建一个应用,上传文件,创建数据索引(切片),然后将上传的数据配置到应用的知识库中,就是这么简单…
接下来就可以测试了
如果我们想利用代码去调用也是可以的
from http import HTTPStatus
from dashscope import Application
def call_agent_app():
response = Application.call(app_id='换成自己的',
prompt='Introduce the capital of China',
api_key='申请一个就行',)
if response.status_code != HTTPStatus.OK:
print('request_id=%s, code=%s, message=%s\n' % (response.request_id, response.status_code, response.message))
else:
print('request_id=%s\n output=%s\n usage=%s\n' % (response.request_id, response.output, response.usage))
if __name__ == '__main__':
call_agent_app()
prompt可以换成自己问的问题,也可以用streamlit简单写个界面,这样就完成了一个套壳百炼的RAG
import streamlit as st
from http import HTTPStatus
from dashscope import Application
# 定义调用代理应用的函数
def call_agent_app(prompt):
response = Application.call(app_id='xxx',
prompt=prompt,
api_key='xxx')
return response
# Streamlit 应用
def main():
st.title("与代理应用交互")
# 创建表单
with st.form(key="user_input_form"):
# 用户输入框
user_prompt = st.text_input("请输入您的问题:", "llama2有多少参数")
# 隐藏提交按钮,敲回车即可提交
submit_button = st.form_submit_button(label="提交")
if submit_button:
if user_prompt:
# 调用代理应用
response = call_agent_app(user_prompt)
# 检查响应状态
if response.status_code != HTTPStatus.OK:
st.error(
f'请求失败: request_id={response.request_id}, code={response.status_code}, message={response.message}')
else:
# st.success(f'请求成功: request_id={response.request_id}')
st.write(f'输出: {response.output.text}')
st.write(f'使用模型: {response.usage.models[0].model_id},输入token: {response.usage.models[0].input_tokens}, 输出token: {response.usage.models[0].output_tokens}')
else:
st.warning("请输入有效的问题!")
if __name__ == '__main__':
main()