物理学中非常重要的科里奥利力推导

科里奥利力是描述在旋转参考系中物体运动时所表现出的惯性力。以下是科里奥利力的推导过程:

 

 1. 参考系与坐标系

假设有一个惯性参考系 \( S \),其坐标系为 \( (x, y, z) \),以及一个以恒定角速度 \( \boldsymbol{\omega} \) 旋转的非惯性参考系 \( S' \),其坐标系为 \( (x', y', z') \)。旋转轴为 \( z \)-轴。

 

 2. 位置矢量

在惯性参考系 \( S \) 中,位置矢量 \( \mathbf{r} \) 可以表示为:

\[ \mathbf{r} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k} \]

在旋转参考系 \( S' \) 中,位置矢量 \( \mathbf{r}' \) 为:

\[ \mathbf{r}' = x' \mathbf{i}' + y' \mathbf{j}' + z' \mathbf{k}' \]

 

 3. 速度关系

在惯性参考系 \( S \) 中,速度 \( \mathbf{v} \) 为:

\[ \mathbf{v} = \frac{d\mathbf{r}}{dt} \]

在旋转参考系 \( S' \) 中,速度 \( \mathbf{v}' \) 为:

\[ \mathbf{v}' = \frac{d\mathbf{r}'}{dt} \]

由于参考系 \( S' \) 在旋转,基矢量 \( \mathbf{i}' \), \( \mathbf{j}' \), \( \mathbf{k}' \) 随时间变化,因此:

\[ \frac{d\mathbf{r}'}{dt} = \frac{d}{dt}(x' \mathbf{i}' + y' \mathbf{j}' + z' \mathbf{k}') = \frac{dx'}{dt} \mathbf{i}' + \frac{dy'}{dt} \mathbf{j}' + \frac{dz'}{dt} \mathbf{k}' + x' \frac{d\mathbf{i}'}{dt} + y' \frac{d\mathbf{j}'}{dt} + z' \frac{d\mathbf{k}'}{dt} \]

由于 \( \mathbf{i}' \), \( \mathbf{j}' \), \( \mathbf{k}' \) 随参考系旋转,其时间导数为:

\[ \frac{d\mathbf{i}'}{dt} = \boldsymbol{\omega} \times \mathbf{i}', \quad \frac{d\mathbf{j}'}{dt} = \boldsymbol{\omega} \times \mathbf{j}', \quad \frac{d\mathbf{k}'}{dt} = \boldsymbol{\omega} \times \mathbf{k}' \]

因此:

\[ \frac{d\mathbf{r}'}{dt} = \mathbf{v}' + \boldsymbol{\omega} \times \mathbf{r}' \]

其中 \( \mathbf{v}' = \frac{dx'}{dt} \mathbf{i}' + \frac{dy'}{dt} \mathbf{j}' + \frac{dz'}{dt} \mathbf{k}' \) 是旋转参考系中的速度。

 

 4. 加速度关系

在惯性参考系 \( S \) 中,加速度 \( \mathbf{a} \) 为:

\[ \mathbf{a} = \frac{d\mathbf{v}}{dt} \]

在旋转参考系 \( S' \) 中,加速度 \( \mathbf{a}' \) 为:

\[ \mathbf{a}' = \frac{d\mathbf{v}'}{dt} \]

同样,由于参考系旋转,基矢量随时间变化,因此:

\[ \frac{d\mathbf{v}}{dt} = \frac{d}{dt}(\mathbf{v}' + \boldsymbol{\omega} \times \mathbf{r}') = \frac{d\mathbf{v}'}{dt} + \boldsymbol{\omega} \times \frac{d\mathbf{r}'}{dt} \]

代入 \( \frac{d\mathbf{r}'}{dt} = \mathbf{v}' + \boldsymbol{\omega} \times \mathbf{r}' \),得到:

\[ \frac{d\mathbf{v}}{dt} = \mathbf{a}' + \boldsymbol{\omega} \times (\mathbf{v}' + \boldsymbol{\omega} \times \mathbf{r}') \]

展开后:

\[ \mathbf{a} = \mathbf{a}' + 2 \boldsymbol{\omega} \times \mathbf{v}' + \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r}') \]

 

 5. 科里奥利力

在旋转参考系中,牛顿第二定律为:

\[ \mathbf{F}' = m \mathbf{a}' \]

将 \( \mathbf{a} \) 的表达式代入,得到:

\[ \mathbf{F}' = m (\mathbf{a} - 2 \boldsymbol{\omega} \times \mathbf{v}' - \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r}')) \]

其中 \( \mathbf{F} = m \mathbf{a} \) 是惯性参考系中的力。因此,旋转参考系中的有效力为:

\[ \mathbf{F}' = \mathbf{F} - 2m \boldsymbol{\omega} \times \mathbf{v}' - m \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r}') \]

其中 \( -2m \boldsymbol{\omega} \times \mathbf{v}' \) 是科里奥利力,\( -m \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r}') \) 是离心力。

 

 6. 科里奥利力的表达式

科里奥利力的表达式为:

\[ \mathbf{F}_c = -2m \boldsymbol{\omega} \times \mathbf{v}' \]

其中 \( \boldsymbol{\omega} \) 是旋转参考系的角速度,\( \mathbf{v}' \) 是物体在旋转参考系中的速度。

 

 总结

科里奥利力是旋转参考系中由于物体运动速度与参考系旋转角速度相互作用而产生的惯性力,其表达式为:

\[ \mathbf{F}_c = -2m \boldsymbol{\omega} \times \mathbf{v}' \]

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值