电气类电网输电线异物检测任务的实现 通过yolov8训练输电线异物检测数据集 建立基于深度学习yolov8卷积神经网络的输电线异物检测
文章目录
以下文字及代码仅供参考。

、输电线异物检测数据集,输电线异物检测
1300,jpg和xml相对应
可转化为txt文件
基于 YOLOv8 的输电线异物检测数据集的完整实现流程。我们将从数据准备、格式转换、数据划分、环境搭建、数据配置、模型训练、超参数配置、模型推理、批量推理和性能评估等方面详细说明,仅供参考
—
1. 数据准备
数据集结构
假设数据集目录结构如下:
dataset/
├── images/
│ ├── img1.jpg
│ ├── img2.jpg
│ └── ...
├── labels_voc/
│ ├── img1.xml
│ ├── img2.xml
│ └── ...
- 每张图片对应一个标注文件(VOC格式:
xml
)。 - 标注类别:例如
foreign_object
表示异物。
2. 格式转换
将 VOC 格式的标注文件转换为 YOLO 格式(txt
文件):
import os
import xml.etree.ElementTree as ET
def convert_voc_to_yolo(voc_dir, yolo_dir, classes):
if not os.path.exists(yolo_dir):
os.makedirs(yolo_dir)
for xml_file in os.listdir(voc_dir):
tree = ET.parse(os.path.join(voc_dir, xml_file))
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
with open(os.path.join(yolo_dir, os.path.splitext(xml_file)[0] + '.txt'), 'w') as f:
for obj in root.findall('object'):
cls = obj.find('name').text
if cls not in classes:
continue
cls_id = classes.index(cls)
bbox = obj.find('bndbox')
xmin = int(bbox.find('xmin').text)
ymin = int(bbox.find('ymin').text)
xmax = int(bbox.find('xmax').text)
ymax = int(bbox.find('ymax').text)
x_center = (xmin + xmax) / 2.0 / w
y_center = (ymin + ymax) / 2.0 / h
width = (xmax - xmin) / w
height = (ymax - ymin) / h
f.write(f"{cls_id} {x_center:.6f} {y_center:.6f} {width:.6f} {height:.6f}\n")
# 类别列表
classes = ['foreign_object']
convert_voc_to_yolo('dataset/labels_voc', 'dataset/labels_yolo', classes)
3. 数据划分
将数据集划分为训练集、验证集和测试集(如8:1:1):
import os
import random
def split_dataset(image_dir, train_ratio=0.8, val_ratio=0.1):
images = [f for f in os.listdir(image_dir) if f.endswith('.jpg')]
random.shuffle(images)
train_num = int(len(images) * train_ratio)
val_num = int(len(images) * val_ratio)
train_images = images[:train_num]
val_images = images[train_num:train_num + val_num]
test_images = images[train_num + val_num:]
return train_images, val_images, test_images
image_dir = 'dataset/images'
train_images, val_images, test_images = split_dataset(image_dir)
# 保存划分结果
with open('dataset/train.txt', 'w') as f:
f.writelines([os.path.join(image_dir, img) + '\n' for img in train_images])
with open('dataset/val.txt', 'w') as f:
f.writelines([os.path.join(image_dir, img) + '\n' for img in val_images])
with open('dataset/test.txt', 'w') as f:
f.writelines([os.path.join(image_dir, img) + '\n' for img in test_images])
4. 环境搭建
安装 YOLOv8 所需依赖库:
pip install ultralytics
5. 数据配置
创建 YOLOv8 的数据配置文件 data.yaml
:
train: dataset/train.txt
val: dataset/val.txt
test: dataset/test.txt
nc: 1 # 类别数量
names: ['foreign_object'] # 类别名称
6. 模型训练
使用 YOLOv8 进行训练:
from ultralytics import YOLO
# 加载预训练模型
model = YOLO('yolov8n.pt') # 可选择 yolov8s, yolov8m, yolov8l, yolov8x
# 开始训练
model.train(data='data.yaml', epochs=50, imgsz=640, batch=16, name='powerline_foreign_object')
7. 配置超参数
在 model.train()
中调整以下参数:
epochs
: 训练轮数。imgsz
: 输入图像尺寸。batch
: 批次大小。name
: 实验名称。
8. 模型推理
加载训练好的模型进行推理:
from PIL import Image
import torch
# 加载模型
model = YOLO('runs/detect/powerline_foreign_object/weights/best.pt')
# 推理函数
def detect(image_path):
results = model(image_path)
for result in results:
im_array = result.plot() # 绘制检测结果
im = Image.fromarray(im_array[..., ::-1]) # BGR to RGB
im.show()
detect('dataset/images/img1.jpg')
9. 批量推理
对测试集进行批量推理:
import glob
test_images = glob.glob('dataset/images/*.jpg')
for img_path in test_images:
detect(img_path)
10. 性能评估
使用 mAP 和其他指标评估模型性能:
# 使用验证集评估模型
metrics = model.val()
print(metrics)
总结
基于 YOLOv8 的输电线异物检测任务的完整实现流程。通过数据准备、格式转换、数据划分、环境搭建、数据配置、模型训练、超参数配置、模型推理、批量推理和性能评估,同学可以快速构建并部署一个高效的输电线异物检测系统。
仅供参考。