LISA学习资源汇总 - 基于大语言模型的推理分割助手

LISA项目简介

LISA(Large Language Instructed Segmentation Assistant)是一个基于大语言模型的图像分割推理系统,由香港中文大学等机构的研究者开发。该系统能够根据自然语言指令生成图像分割结果,并提供解释性输出,实现了复杂推理、世界知识应用、多轮对话等能力。

LISA示例

主要特点

  • 支持复杂推理:能够理解并执行需要推理能力的分割任务
  • 应用世界知识:利用大语言模型的知识解答问题
  • 提供解释性输出:不仅给出分割结果,还能解释原因
  • 支持多轮对话:可以进行连续的问答交互
  • 零样本能力强:仅用少量数据就能实现良好效果

相关资源

1. 项目主页

2. 论文

3. 模型

4. 数据集

5. 在线演示

使用指南

  1. 安装依赖:
pip install -r requirements.txt
pip install flash-attn --no-build-isolation
  1. 下载预训练模型

  2. 运行推理:

python chat.py --version='xinlai/LISA-13B-llama2-v1'
  1. 本地部署:
python app.py --version='xinlai/LISA-13B-llama2-v1 --load_in_4bit'

更多详细使用说明请参考GitHub README

LISA架构

LISA项目为研究人员和开发者提供了一个强大的视觉-语言推理工具,欢迎大家尝试使用并为项目做出贡献!

文章链接;www.dongaigc.com/a/lisa-learning-resources-summary

https://www.dongaigc.com/a/lisa-learning-resources-summary

www.dongaigc.com/p/dvlab-research/LISA

https://www.dongaigc.com/p/dvlab-research/LISA

### LISA 大模型及其特点 LISA(Large-scale Incremental Self-supervised Architecture)是一种大规模增量自监督架构的大语言模型[^1]。该模型通过利用大量的未标注数据进行预训练,在多种自然语言处理任务上表现出卓越性能。 #### 自监督学习机制 LISA采用先进的自监督学习方法,能够从未标记的数据集中自动发现模式并提取特征。这种能力使得模型可以在不依赖大量人工标注的情况下实现高效的学习过程。 #### 增量式更新策略 不同于传统的静态预训练方式,LISA支持动态调整参数并通过持续获取新信息来优化自身表现。这一特性不仅提高了资源利用率还增强了系统的适应性和灵活性。 ```python def update_model_incrementally(new_data): """ 动态更新模型参数函数 参数: new_data (list): 新增训练样本列表 返回: updated_params (dict): 更新后的模型参数字典 """ # 实现具体的增量更新逻辑... pass ``` ### 大规模语言模型概述 大型语言模型是指那些拥有数亿甚至数十亿参数的语言理解工具。这些模型通常基于Transformer架构构建,并经过海量文本语料库上的充分训练而获得强大的泛化能力和表达力[^2]。 #### 应用场景广泛 由于其出色的上下文感知功能和多模态融合潜力,这类模型被广泛应用在机器翻译、对话系统开发等多个领域内。此外,随着技术进步,更多创新应用场景正在不断涌现出来。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值