数据处理和分析之分类算法:梯度提升机(GradientBoosting):CatBoost算法详解

数据处理和分析之分类算法:梯度提升机(GradientBoosting):CatBoost算法详解

在这里插入图片描述

数据处理和分析之分类算法:梯度提升机 (Gradient Boosting):CatBoost算法详解

简介

梯度提升机的基本概念

梯度提升机(Gradient Boosting Machine, GBM)是一种迭代的决策树算法,用于解决分类和回归问题。它通过构建一系列弱学习器(通常是决策树),然后将它们组合成一个强学习器。GBM 的核心思想是逐步修正模型的错误,每一轮迭代中,算法都会关注于上一轮预测错误较大的样本,通过构建新的决策树来修正这些错误,从而提高整体模型的预测能力。

GBM 的工作流程如下:

  1. 初始化模型,通常是一个简单的模型,如平均值或常数。
  2. 对于每一棵树:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值