数据处理和分析之分类算法:梯度提升机(GradientBoosting):CatBoost算法详解
数据处理和分析之分类算法:梯度提升机 (Gradient Boosting):CatBoost算法详解
简介
梯度提升机的基本概念
梯度提升机(Gradient Boosting Machine, GBM)是一种迭代的决策树算法,用于解决分类和回归问题。它通过构建一系列弱学习器(通常是决策树),然后将它们组合成一个强学习器。GBM 的核心思想是逐步修正模型的错误,每一轮迭代中,算法都会关注于上一轮预测错误较大的样本,通过构建新的决策树来修正这些错误,从而提高整体模型的预测能力。
GBM 的工作流程如下:
- 初始化模型,通常是一个简单的模型,如平均值或常数。
- 对于每一棵树:
- 计