上周智谱在KDD 2024上,发布了新一代基座模型,包括语言模型GLM-4-Plus、文生图模型CogView-3-Plus、图像/视频理解模型GLM-4V-Plus。
每一个都带了Plus,所以应该都挺厉害?如之前写过的一样,BigModel大气,作为智谱的官方平台,嘎嘎送token,是真的送!那必须得继续体验一波新模型。
前排提示,文末有大模型AGI-CSDN独家资料包哦!
到2024年9月份了,体验一个新的大模型,可能就是prompt遵循能力,agent的规划,长文本的信息提取,推理等等。这里直接玩玩Agent了,刚好可以一起测试一下另外的2个模型。
Agent是一个使用LLM作为engine的智能体系统,它具备访问外部工具的能力。所以系统核心有2点, 引擎(LLM) & 工具(tool)。引擎主要起到规划和反思的作用,工具让大模型可以去做很多复杂的事情,比如生成图片,生成视频,文档问答等等。
一般API都有一个tool_calls的参数可以传入工具,黑盒的封装prompt,既然这里是测试模型的能力,必须不用这个参数了,看看对常规的Agent的prompt的鲁棒性。
框架上,这里使用抱抱脸的CodeAgent,用起来比较灵活。
封装引擎,只需要封装一个传入messages,stop_sequences参数的函数即可,这里跟BigModel的API无缝对接,api_key可以从智谱bigmodel平台申请,或者点击文末原文链接直达
from zhipuai import ZhipuAI
client = ZhipuAI(api_key="") # 填写您自己的APIKey
def llm_engine(messages, stop_sequences=None):
response = client.chat.completions.create(
model="glm-4-plus",
messages=messages,
stop=stop_sequences
)
return response.choices[0].message.content
工具定义:
- 文生图
使用cogview3-plus生成图片,继承一个Tool类,写清楚工具定义,以及函数定义即可,forward写调用cogview-3-plus生成图片
from transformers import Tool
class Text2image(Tool):
name = "text_to_image"
description = (
"这是一个根据文本生成图片的工具,它返回一个生成的图片路径"
)
inputs = {
"prompt": {
"type": "text",
"description": "需要生成图片的描述文本",
}
}
output_type = "text"
def forward(self, prompt):
response = client.images.generations(
model="cogview-3-plus",
prompt=prompt
)
print(response.data[0].url)
return response.data[0].url
- 图片问答
这里使用最新的glm-4v-plus,文档问答也是类似,输入就是图片+问题,得到答案
class ImageQuestionAnswering(Tool):
description = "这是一个可以回答关于图片问题的工具,它返回一个文本,作为对问题的答案。"
name = "image_qa"
inputs = {
"image_path": {
"type": "text",
"description": "图片路径或url",
},
"question": {"type": "text", "description": "问题"},
}
output_type = "text"
def forward(self, image_path, question):
if 'http' not in image_path:
with open(image_path, 'rb') as img_file:
img_base = base64.b64encode(img_file.read()).decode('utf-8')
else:
img_base = image_path
response = client.chat.completions.create(
model="glm-4v-plus", # 填写需要调用的模型名称
messages=[
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {
"url": img_base
}
},
{
"type": "text",
"text": question
}
]
}
]
)
return response.choices[0].message.content
然后就可以轻松构建出Agent系统
from transformers import Tool, load_tool, CodeAgent
agent = CodeAgent(tools=[Text2image(),ImageQuestionAnswering()], llm_engine=llm_engine, verbose=1)
agent.run(
"画一张搞笑图片,然后描述一下这张图片为什么搞笑?以及图片内容是否符合你生成的prompt"
)
日志如下,中间是Agent的规划,步骤:
-
s0: 输入query: 画一张搞笑图片,然后描述一下这张图片为什么搞笑?以及图片内容是否符合你生成的prompt
-
s1: 引擎先成了一个搞笑的prompt;一张搞笑的图片,包含一个滑稽的小丑在马戏团表演,背景有彩色的气球和观众
-
s2: 生成了规划的工具调用步骤, 一次text_to_image,2次image_qa
prompt = "一张搞笑的图片,包含一个滑稽的小丑在马戏团表演,背景有彩色的气球和观众"
image_path = text_to_image(prompt=prompt)
# 描述这张图片为什么搞笑
question_why_funny = "这张图片为什么搞笑?"
answer_why_funny = image_qa(image_path=image_path, question=question_why_funny)
# 确认图片内容是否符合生成的prompt
question_content_match = "这张图片的内容是否符合prompt?"
answer_content_match = image_qa(image_path=image_path, question=question_content_match)
print(f"图片路径: {image_path}")
print(f"为什么搞笑: {answer_why_funny}")
print(f"内容是否符合prompt: {answer_content_match}")
- s3: 规划步骤的执行结果
图片路径: https://aigc-files.bigmodel.cn/api/cogview/202409041939328d669b226dcc4852_0.png
为什么搞笑: 这张图片的幽默之处在于场景的荒谬和夸张。小丑的姿势和表情非常夸张,他张开双臂,蹲在地上,好像他正在做一个巨大的拥抱或者是在做一个戏剧性的姿势。他的脸部表情很滑稽,眼睛睁得很大,嘴巴张开,好像他正在大笑或者是在惊讶中。此外,周围的环境也很滑稽,充满了五颜六色的气球,给人一种混乱和欢乐的感觉。
内容是否符合prompt: 图片中的内容与您提供的prompt非常符合。图片中有一个小丑,他张开双臂蹲在一堆五颜六色的气球中,脸上带着笑容,看起来非常开心。他的身后有一群人也在笑着举起双手似乎在为小丑的动作而欢呼。整个场景给人一种欢乐、庆祝的感觉。
整体体验还是不错的,大模型发展到现在,构建一个多轮具备反思能力的Agent系统门槛进一步降低了!
解锁AI新知,与技术大咖并肩!