如何训练自己的数据集之—道路裂缝瑕疵类数据集

一,RDD道路瑕疵数据集,一共两万多张图片,已经标注好,txt格式,已经划分好训练集和验证集,yolo模型可直接训练道路裂缝,坑洼,病害数据集


标签包括 纵向裂缝(0), 横向裂缝(1), 鳄鱼裂缝(2), 坑洼(3).

,一,道路裂缝两万张,已标注,txt,已划分训练集和验证集,yolo模型可直接训练 二,道路裂缝数据,坑洼,病害数据集无人机视角,摩托车视角,车辆视角覆盖道路所有问题八类16000

RDD2022道路瑕疵数据集介绍

数据集概述

此数据集专为道路瑕疵检测设计,包含了四种常见的道路瑕疵类型的高清图像及相应的标注文件。数据集涵盖了纵向裂缝、横向裂缝、鳄鱼裂缝和坑洼等常见的道路瑕疵类型,并且每个类别都有详细的标注信息。该数据集已经按照YOLO格式进行了标注,并且划分好了训练集和验证集,可以直接用于YOLO模型的训练。

数据集特点
  • 高清影像:所有图像均为高清影像,适合用于精确的道路瑕疵检测。
  • 详细标注:每张图像都标注了不同道路瑕疵的位置,可以用于训练模型来识别这些瑕疵。
  • 多样性:涵盖了不同类型的道路瑕疵,适用于多种环境下的应用。
  • 直接可用性:数据集已按照标准YOLO TXT格式标注,无需进一步处理即可直接用于模型训练。
  • 多类别:数据集中标注了四种类别,适合进行多目标检测任务。
数据集统计

数据集结构
RDD2022RoadDefectDetectionDataset/
├── images/  # 图像文件
│   ├── train/  # 训练集图像
│   │   ├── image_00001.jpg
│   │   ├── image_00002.jpg
│   │   └── ...
│   └── val/  # 验证集图像
│       ├── image_00001.jpg
│       ├── image_00002.jpg
│       └── ...
└── labels/  # YOLO格式标注文件夹
    ├── train/  # 训练集标签
    │   ├── image_00001.txt
    │   ├── image_00002.txt
    │   └── ...
    └── val/  # 验证集标签
        ├── image_00001.txt
        ├── image_00002.txt
        └── ...
标注格式示例
YOLO格式

每行表示一个物体的边界框和类别:

class_id cx cy w h
  • class_id:类别ID(从0开始编号)
    • 0: Longitudinal Crack(纵向裂缝)
    • 1: Transverse Crack(横向裂缝)
    • 2: Alligator Crack(鳄鱼裂缝)
    • 3: Pothole(坑洼)
  • cx:目标框中心点x坐标 / 图像宽度。
  • cy:目标框中心点y坐标 / 图像高度。
  • w:目标框宽度 / 图像宽度。
  • h:目标框高度 / 图像高度。

例如:

0 0.453646 0.623148 0.234375 0.461111
1 0.553646 0.723148 0.134375 0.361111
2 0.353646 0.823148 0.154375 0.261111
使用该数据集进行模型训练
1. 数据预处理与加载

首先,我们需要加载数据并将其转换为适合YOLOv5等模型使用的格式。假设你已经安装了PyTorch和YOLOv5。

import os
from PIL import Image
import torch
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms

class RoadDefectDetectionDataset(Dataset):
    def __init__(self, image_dir, label_dir, transform=None):
        self.image_dir = image_dir
        self.label_dir = label_dir
        self.transform = transform
        self.image_files = [f for f in os.listdir(image_dir) if f.endswith('.jpg')]

    def __len__(self):
        return len(self.image_files)

    def __getitem__(self, idx):
        img_name = self.image_files[idx]
        img_path = os.path.join(self.image_dir, img_name)
        label_path = os.path.join(self.label_dir, img_name.replace('.jpg', '.txt'))

        # 加载图像
        image = Image.open(img_path).convert('RGB')
        if self.transform:
            image = self.transform(image)

        # 加载标注
        with open(label_path, 'r') as file:
            lines = file.readlines()
            boxes = []
            labels = []
            for line in lines:
                class_id, cx, cy, w, h = map(float, line.strip().split())
                xmin = (cx - w / 2) * image.width
                ymin = (cy - h / 2) * image.height
                xmax = (cx + w / 2) * image.width
                ymax = (cy + h / 2) * image.height
                boxes.append([xmin, ymin, xmax, ymax])
                labels.append(int(class_id))

        boxes = torch.tensor(boxes, dtype=torch.float32)
        labels = torch.tensor(labels, dtype=torch.int64)

        return image, boxes, labels

# 数据增强
transform = transforms.Compose([
    transforms.RandomHorizontalFlip(),  # 随机水平翻转
    transforms.RandomRotation(10),      # 随机旋转
    transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),  # 随机颜色变换
    transforms.Resize((640, 640)),
    transforms.ToTensor(),
])

# 创建数据集
train_dataset = RoadDefectDetectionDataset(image_dir='RDD2022RoadDefectDetectionDataset/images/train/', label_dir='RDD2022RoadDefectDetectionDataset/labels/train/', transform=transform)
val_dataset = RoadDefectDetectionDataset(image_dir='RDD2022RoadDefectDetectionDataset/images/val/', label_dir='RDD2022RoadDefectDetectionDataset/labels/val/', transform=transform)

train_loader = DataLoader(train_dataset, batch_size=4, shuffle=True, num_workers=4)
val_loader = DataLoader(val_dataset, batch_size=4, shuffle=False, num_workers=4)
2. 构建模型

我们可以使用YOLOv5模型进行目标检测任务。假设你已经克隆了YOLOv5仓库,并按照其文档进行了环境设置。

git clone https://github.com/ultralytics/yolov5
cd yolov5
pip install -r requirements.txt

创建数据配置文件 data/rdd2022_road_defect_detection.yaml

train: path/to/RDD2022RoadDefectDetectionDataset/images/train
val: path/to/RDD2022RoadDefectDetectionDataset/images/val

nc: 4  # 类别数
names: ['Longitudinal Crack', 'Transverse Crack', 'Alligator Crack', 'Pothole']
3. 训练模型

使用YOLOv5进行训练。

python train.py --img 640 --batch 16 --epochs 100 --data data/rdd2022_road_defect_detection.yaml --weights yolov5s.pt --cache
4. 评估模型

在验证集上评估模型性能。

python val.py --img 640 --batch 16 --data data/rdd2022_road_defect_detection.yaml --weights runs/train/exp/weights/best.pt --task test
5. 推理

使用训练好的模型进行推理。

python detect.py --source path/to/test/image.jpg --weights runs/train/exp/weights/best.pt --conf 0.5

实验报告

实验报告应包括以下内容:

  1. 项目简介:简要描述项目的背景、目标和意义。
  2. 数据集介绍:详细介绍数据集的来源、规模、标注格式等。
  3. 模型选择与配置:说明选择的模型及其配置参数。
  4. 训练过程:记录训练过程中的损失变化、学习率调整等。
  5. 评估结果:展示模型在验证集上的性能指标(如mAP、准确率)。
  6. 可视化结果:提供一些典型样本的检测结果可视化图。
  7. 结论与讨论:总结实验结果,讨论可能的改进方向。
  8. 附录:包含代码片段、图表等补充材料。

数据增强

由于数据集规模较大,可以考虑使用数据增强技术来增加训练集的多样性,从而提高模型的泛化能力。可以使用的数据增强技术包括但不限于:

  • 随机旋转和裁剪
  • 随机水平翻转
  • 随机颜色变换

依赖库

确保安装了以下依赖库:

pip install torch torchvision
pip install -r yolov5/requirements.txt

总结

这个RDD2022道路瑕疵检测数据集提供了丰富的标注数据,非常适合用于训练和评估道路瑕疵检测模型。通过YOLOv5框架,可以方便地构建和训练高性能的道路瑕疵检测模型。实验报告可以帮助你更好地理解和分析模型的表现,并为进一步的研究提供参考。由于数据集规模较大,建议在训练过程中使用数据增强技术以提高模型的泛化能力。

 二,道路裂缝,坑洼,病害数据集


包括无人机视角,摩托车视角,车辆视角
覆盖道路所有问题
一共有八类16000张


0到7依次为: ['横向裂缝', '纵向裂缝', '块状裂缝', '龟裂', '坑槽', '修补网状裂缝', '修补裂缝', '修补坑槽']

数据集概述

此数据集专为道路裂缝、坑洼及其他病害检测设计,包含了八种常见道路问题的高清图像及相应的标注文件。数据集涵盖了不同的视角(无人机视角、摩托车视角、车辆视角),并且每个类别都有详细的标注信息。该数据集已经按照YOLO格式进行了标注,并且划分好了训练集和验证集,可以直接用于YOLO模型的训练。

数据集特点
  • 高清影像:所有图像均为高清影像,适合用于精确的道路病害检测。
  • 详细标注:每张图像都标注了不同道路病害的位置,可以用于训练模型来识别这些病害。
  • 多样性:涵盖了不同视角下的道路病害,适用于多种环境下的应用。
  • 直接可用性:数据集已按照标准YOLO TXT格式标注,无需进一步处理即可直接用于模型训练。
  • 多类别:数据集中标注了八种类别,适合进行多目标检测任务。
数据集统计
病害类型类别ID图片数量标注个数
Transverse Crack (横向裂缝)0未知未知
Longitudinal Crack (纵向裂缝)1未知未知
Block Crack (块状裂缝)2未知未知
Alligator Crack (龟裂)3未知未知
Rut (坑槽)4未知未知
Mesh Repair (修补网状裂缝)5未知未知
Patch Repair (修补裂缝)6未知未知
Patch Rut (修补坑槽)7未知未知
总计16,000未知
数据集结构
RoadCrackAndDefectDetectionDataset/
├── images/  # 图像文件
│   ├── train/  # 训练集图像
│   │   ├── image_00001.jpg
│   │   ├── image_00002.jpg
│   │   └── ...
│   └── val/  # 验证集图像
│       ├── image_00001.jpg
│       ├── image_00002.jpg
│       └── ...
└── labels/  # YOLO格式标注文件夹
    ├── train/  # 训练集标签
    │   ├── image_00001.txt
    │   ├── image_00002.txt
    │   └── ...
    └── val/  # 验证集标签
        ├── image_00001.txt
        ├── image_00002.txt
        └── ...
标注格式示例
YOLO格式

每行表示一个物体的边界框和类别:

class_id cx cy w h
  • class_id:类别ID(从0开始编号)
    • 0: Transverse Crack(横向裂缝)
    • 1: Longitudinal Crack(纵向裂缝)
    • 2: Block Crack(块状裂缝)
    • 3: Alligator Crack(龟裂)
    • 4: Rut(坑槽)
    • 5: Mesh Repair(修补网状裂缝)
    • 6: Patch Repair(修补裂缝)
    • 7: Patch Rut(修补坑槽)
  • cx:目标框中心点x坐标 / 图像宽度。
  • cy:目标框中心点y坐标 / 图像高度。
  • w:目标框宽度 / 图像宽度。
  • h:目标框高度 / 图像高度。

例如:

0 0.453646 0.623148 0.234375 0.461111
1 0.553646 0.723148 0.134375 0.361111
2 0.353646 0.823148 0.154375 0.261111
使用该数据集进行模型训练
1. 数据预处理与加载

首先,我们需要加载数据并将其转换为适合YOLOv5等模型使用的格式。假设你已经安装了PyTorch和YOLOv5。

import os
from PIL import Image
import torch
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms

class RoadCrackAndDefectDetectionDataset(Dataset):
    def __init__(self, image_dir, label_dir, transform=None):
        self.image_dir = image_dir
        self.label_dir = label_dir
        self.transform = transform
        self.image_files = [f for f in os.listdir(image_dir) if f.endswith('.jpg')]

    def __len__(self):
        return len(self.image_files)

    def __getitem__(self, idx):
        img_name = self.image_files[idx]
        img_path = os.path.join(self.image_dir, img_name)
        label_path = os.path.join(self.label_dir, img_name.replace('.jpg', '.txt'))

        # 加载图像
        image = Image.open(img_path).convert('RGB')
        if self.transform:
            image = self.transform(image)

        # 加载标注
        with open(label_path, 'r') as file:
            lines = file.readlines()
            boxes = []
            labels = []
            for line in lines:
                class_id, cx, cy, w, h = map(float, line.strip().split())
                xmin = (cx - w / 2) * image.width
                ymin = (cy - h / 2) * image.height
                xmax = (cx + w / 2) * image.width
                ymax = (cy + h / 2) * image.height
                boxes.append([xmin, ymin, xmax, ymax])
                labels.append(int(class_id))

        boxes = torch.tensor(boxes, dtype=torch.float32)
        labels = torch.tensor(labels, dtype=torch.int64)

        return image, boxes, labels

# 数据增强
transform = transforms.Compose([
    transforms.RandomHorizontalFlip(),  # 随机水平翻转
    transforms.RandomRotation(10),      # 随机旋转
    transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),  # 随机颜色变换
    transforms.Resize((640, 640)),
    transforms.ToTensor(),
])

# 创建数据集
train_dataset = RoadCrackAndDefectDetectionDataset(image_dir='RoadCrackAndDefectDetectionDataset/images/train/', label_dir='RoadCrackAndDefectDetectionDataset/labels/train/', transform=transform)
val_dataset = RoadCrackAndDefectDetectionDataset(image_dir='RoadCrackAndDefectDetectionDataset/images/val/', label_dir='RoadCrackAndDefectDetectionDataset/labels/val/', transform=transform)

train_loader = DataLoader(train_dataset, batch_size=4, shuffle=True, num_workers=4)
val_loader = DataLoader(val_dataset, batch_size=4, shuffle=False, num_workers=4)
2. 构建模型

我们可以使用YOLOv5模型进行目标检测任务。假设你已经克隆了YOLOv5仓库,并按照其文档进行了环境设置。

git clone https://github.com/ultralytics/yolov5
cd yolov5
pip install -r requirements.txt

train: path/to/RoadCrackAndDefectDetectionDataset/images/train
val: path/to/RoadCrackAndDefectDetectionDataset/images/val

nc: 8  # 类别数
names: ['Transverse Crack', 'Longitudinal Crack', 'Block Crack', 'Alligator Crack', 'Rut', 'Mesh Repair', 'Patch Repair', 'Patch Rut']
3. 训练模型

使用YOLOv5进行训练。

python train.py --img 640 --batch 16 --epochs 100 --data data/road_crack_and_defect_detection.yaml --weights yolov5s.pt --cache
4. 评估模型

在验证集上评估模型性能。

python val.py --img 640 --batch 16 --data data/road_crack_and_defect_detection.yaml --weights runs/train/exp/weights/best.pt --task test
5. 推理

使用训练好的模型进行推理。

python detect.py --source path/to/test/image.jpg --weights runs/train/exp/weights/best.pt --conf 0.5

实验报告

实验报告应包括以下内容:

  1. 项目简介:简要描述项目的背景、目标和意义。
  2. 数据集介绍:详细介绍数据集的来源、规模、标注格式等。
  3. 模型选择与配置:说明选择的模型及其配置参数。
  4. 训练过程:记录训练过程中的损失变化、学习率调整等。
  5. 评估结果:展示模型在验证集上的性能指标(如mAP、准确率)。
  6. 可视化结果:提供一些典型样本的检测结果可视化图。
  7. 结论与讨论:总结实验结果,讨论可能的改进方向。
  8. 附录:包含代码片段、图表等补充材料。

数据增强

由于数据集规模较大,可以考虑使用数据增强技术来增加训练集的多样性,从而提高模型的泛化能力。可以使用的数据增强技术包括但不限于:

  • 随机旋转和裁剪
  • 随机水平翻转
  • 随机颜色变换

依赖库

确保安装了以下依赖库:

pip install torch torchvision
pip install -r yolov5/requirements.txt

总结

这个道路裂缝、坑洼、病害检测数据集提供了丰富的标注数据,非常适合用于训练和评估道路病害检测模型。通过YOLOv5框架,可以方便地构建和训练高性能的道路病害检测模型。实验报告可以帮助你更好地理解和分析模型的表现,并为进一步的研究提供参考。由于数据集规模较大,建议在训练过程中使用数据增强技术以提高模型的泛化能力。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值