可见光(RGB)和红外(IR)的无人机检测数据集,两种数据集是对应上的,可见光或者红外均有5019张训练集和1233张验证集。来源于开源数据集anti-uav310,数据集格式已转化为yolo格式,可直接训练,有训练好的模型直接训练
,两种数据集相对应,可见光或者红外均有5019张训练集1233张验证集,已转化为yolo格式可直接训练,+模型,红外可见光无人机数据集 红外无人机数据集 可见光无人机数据集
可见光(RGB)与红外(IR)无人机检测数据集介绍
数据集概述
该数据集来源于开源数据集 anti-uav310
,并且已经针对可见光(RGB)和红外(IR)图像进行了整理,转换为YOLO格式,方便直接用于训练无人机检测模型。数据集包括训练集和验证集,其中每个模态(RGB和IR)都有5019张训练图像和1233张验证图像。
数据集特点
- 双模态数据:数据集包含两个模态的数据——可见光(RGB)图像和红外(IR)图像。这对于开发能够在不同光线条件下工作的无人机检测系统至关重要。
- YOLO格式:数据集已经被转换为YOLO格式,这意味着每个图像都有对应的标签文件(
.txt
),其中包含物体的位置信息(边界框坐标和类别索引)。 - 预处理完成:数据集已经完成了预处理,可以直接用于训练深度学习模型,无需进一步的数据清洗或格式转换。
- 训练和验证集:数据集明确地划分了训练集和验证集,便于模型训练和性能评估。
数据集内容
- 训练集:每个模态(RGB和IR)有5019张图像。
- 验证集:每个模态(RGB和IR)有1233张图像。
数据集结构示例
anti-uav310/
├── RGB/
│ ├── train/
│ │ ├── image1.jpg
│ │ ├── image2.jpg
│ │ └── ...
│ ├── val/
│ │ ├── image1.jpg
│ │ ├── image2.jpg
│ │ └── ...
│ ├── train_labels/
│ │ ├── image1.txt
│ │ ├── image2.txt
│ │ └── ...
│ ├── val_labels/
│ │ ├── image1.txt
│ │ ├── image2.txt
│ │ └── ...
├── IR/
│ ├── train/
│ │ ├── image1.jpg
│ │ ├── image2.jpg
│ │ └── ...
│ ├── val/
│ │ ├── image1.jpg
│ │ ├── image2.jpg
│ │ └── ...
│ ├── train_labels/
│ │ ├── image1.txt
│ │ ├── image2.txt
│ │ └── ...
│ ├── val_labels/
│ │ ├── image1.txt
│ │ ├── image2.txt
│ │ └── ...
└── README.md # 数据集说明
数据集使用说明
- 数据集下载:从指定位置下载数据集,并解压至合适的位置。
- 数据集准备:确认数据集结构是否符合上述结构,确保图像文件与其标签文件正确对应。
- 模型训练:使用YOLO框架或其他支持YOLO格式的框架进行模型训练。例如,可以使用YOLOv5或YOLOv7等流行版本。
YOLO格式标签示例
每个标签文件(.txt
)包含一行或多行数据,每一行代表一个物体的标签,格式如下:
<class_index> <x_center> <y_center> <width> <height>
其中:
<class_index>
是物体类别的索引;<x_center>
是物体中心点相对于图像宽度的比例位置;<y_center>
是物体中心点相对于图像高度的比例位置;<width>
是物体宽度相对于图像宽度的比例;<height>
是物体高度相对于图像高度的比例。
训练模型
以下是一个简单的YOLOv5训练脚本示例,用于演示如何使用这个数据集进行训练。
# 安装YOLOv5依赖
pip install -r requirements.txt
# 下载YOLOv5源码
git clone https://github.com/ultralytics/yolov5.git
cd yolov5/
# 安装YOLOv5
pip install -r requirements.txt
# 设置数据集路径
DATA_PATH=./anti-uav310/
# 更新YOLOv5配置文件
cp $DATA_PATH/data.yaml ./data.yaml
# 开始训练
python train.py --img 640 --batch 16 --epochs 300 --data ./data.yaml --weights yolov5s.pt --cache
注意事项
- 确保YOLOv5配置文件
data.yaml
中指定了正确的训练集和验证集路径。 - 根据硬件性能调整训练参数(如批处理大小、迭代次数等)。
总结
这个数据集为可见光和红外图像的无人机检测提供了丰富的训练和验证样本。通过使用YOLO格式的数据集,可以方便地训练和评估无人机检测模型,从而在多种光线条件下实现高效的无人机检测。对于研究人员和工程师而言,这是一个宝贵的资源,可以帮助他们在实际应用中部署高性能的无人机检测系统。