2024深度学习发论文&模型涨点之——机器学习可解释性
现在以深度学习为主的方法在各个领域都已经next level了,但是如何解释我们的模型仍然是个难题。为什么得到这样的结果往往和结果本身一样重要。因此,个人觉得Explainable AI (XAI)依然会是近些年来一个很热门的方向。
机器学习可解释性(Interpretability in Machine Learning)是确保机器学习模型的预测过程和结果能够被人类理解和解释的能力。随着机器学习模型在各行各业的广泛应用,特别是在医疗、金融、司法等高风险领域,模型的可解释性变得尤为重要。
我整理了一些机器学习可解释性【论文】合集,需要的同学公人人人号【AI创新工场】自取
论文精选
论文1:
The efficacy of machine learning models in lung cancer risk prediction with explainability
机器学习模型在肺癌风险预测中的效能及可解释性
方法
-
机器学习模型比较:使用多种机器学习模型对肺癌相关参数的数值数据集进行训练和测试,比较不同模型的性能和准确性。
-
超参数调优:通过网格搜索算法对每个模型进行超参数调优,以选择最佳参数组合。
-
模型解释性分析:使用决策边界、局部可解释模型-不可知解释(LIME)和树提取等方法对每个模型的决策过程进行解释。
2024机器学习可解释性论文精选

最低0.47元/天 解锁文章
2106

被折叠的 条评论
为什么被折叠?



