能发顶会!图神经网络(GNN)创新方案整理

2024深度学习发论文&模型涨点之——图神经网络

图神经网络(Graph Neural Networks,简称GNN)是一种专门用于处理图数据的深度学习模型。它通过迭代地传递和聚合节点及其邻居的特征信息,从而学习节点和图的表示。GNN的核心思想是利用图中的节点和边之间的关系,通过消息传递和节点更新的方式,来捕捉图的局部结构和全局拓扑特征,进而提取更丰富的特征表示。

我整理了一些图神经网络【论文+代码】合集,需要的同学公人人人号【AI创新工厂】自取。

论文精选

论文1:

TFE-GNN: A Temporal Fusion Encoder Using Graph Neural Networks for Fine-grained Encrypted Traffic Classification

TFE-GNN:使用图神经网络的细粒度加密流量分类的时间融合编码器

方法

字节级流量图构建:提出了一种基于点互信息(PMI)的字节级流量图构建方法,用于挖掘字节间的潜在关联。

双嵌入层:设计了双嵌入层,分别嵌入数据包头部和载荷字节。

GNN-based 流量图编码器:利用多层GNN编码每个流量图到高维图向量。

交叉门控特征融合机制:通过交叉门控特征融合机制整合头部图向量和载荷图向量,获得数据包的整体表示向量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值