2024深度学习发论文&模型涨点之——图神经网络
图神经网络(Graph Neural Networks,简称GNN)是一种专门用于处理图数据的深度学习模型。它通过迭代地传递和聚合节点及其邻居的特征信息,从而学习节点和图的表示。GNN的核心思想是利用图中的节点和边之间的关系,通过消息传递和节点更新的方式,来捕捉图的局部结构和全局拓扑特征,进而提取更丰富的特征表示。
我整理了一些图神经网络【论文+代码】合集,需要的同学公人人人号【AI创新工厂】自取。
论文精选
论文1:
TFE-GNN: A Temporal Fusion Encoder Using Graph Neural Networks for Fine-grained Encrypted Traffic Classification
TFE-GNN:使用图神经网络的细粒度加密流量分类的时间融合编码器
方法
字节级流量图构建:提出了一种基于点互信息(PMI)的字节级流量图构建方法,用于挖掘字节间的潜在关联。
双嵌入层:设计了双嵌入层,分别嵌入数据包头部和载荷字节。
GNN-based 流量图编码器:利用多层GNN编码每个流量图到高维图向量。
交叉门控特征融合机制:通过交叉门控特征融合机制整合头部图向量和载荷图向量,获得数据包的整体表示向量。