更美观的展示
下载后在浏览器中打开。
将会不断更新。但是所有都是基础且必要的操作。
- 为重装系统之后的环境配置提供便捷信息来源。
- 记录一些错误的解决方案。
构建系统
参照经典教程
Windows11 安装 Ubuntu 避坑指南
Windows 和 Ubuntu 双系统的安装和卸载
一些值得注意的点:
如果是 GPT 的磁盘(我使用这个)
同时使用双硬盘的笔记本
那么在 Ubuntu 24.04 中,无需要创建一个 EFI 分区。
当创建根挂载点之后,将自动生成一个 FAT32 格式的引导分区。
推荐使用最简配置
其他的正常操作即可。非常简单。
建立系统备份
Timeshift: 系统快照和备份工具
Timeshift 是一款用于 Linux 的强大工具,它可以创建系统快照并在需要时还原系统到指定的时间点,非常适合在进行高风险操作(如删除关键系统组件、更新系统等)之前使用。
安装 Timeshift
sudo nala update
sudo nala install timeshift
使用 Timeshift 创建快照
-
启动 Timeshift:
-
使用图形界面:
sudo timeshift-gtk
-
使用终端界面:
sudo timeshift
-
-
选择快照类型:
- RSYNC(推荐):适用于大多数场景,它使用文件同步的方式创建快照。
- BTRFS:适用于 Btrfs 文件系统。
-
选择快照存储位置:
- 选择存储快照的磁盘分区(建议使用外部磁盘或与系统分区不同的磁盘分区)。
-
创建快照:
-
单击 “Create” 按钮即可开始创建快照。
-
或者在终端中运行:
sudo timeshift --create --comments "Before removing Snap"
-
还原快照
如果删除关键组件后系统出现问题,可以通过以下步骤还原快照:
-
启动 Timeshift:
-
图形界面:
sudo timeshift-gtk
-
终端:
sudo timeshift --restore
-
-
选择要还原的快照。
-
按照提示操作,完成系统还原。
自动创建快照
为了避免忘记创建快照,您可以设置 Timeshift 自动创建快照:
- 启动 Timeshift。
- 转到 Settings > Schedule,启用定时快照。
- 根据需求选择创建快照的频率(如每天、每周等)。
最基本配置
时间同步
-
更新软件包列表
sudo apt update
-
安装时间同步工具
sudo apt install ntpdate
-
同步时间
sudo ntpdate time.windows.com
-
设置硬件时钟为本地时间
sudo timedatectl set-local-rtc 1 --adjust-system-clock
-
验证同步状态
timedatectl status
换源
-
你可以手动操作,但容易出错。
-
我曾使用 Fishros 脚本更换软件源,命令如下:
wget http://fishros.com/install -O fishros && . fishros
注意:Fishros 的一键换源可能会导致依赖问题且速度较慢,推荐手动更换源。
官方源
在软件更新中,选择 Ubuntu 官方源是更好的选择。比如说阿里源。
-
在 Ubuntu 24.04 中,源地址配置文件发生了变化,不再使用以前的
sources.list
文件,而是以下文件:
/etc/apt/sources.list.d/ubuntu.sources
-
备份源配置文件:
sudo cp /etc/apt/sources.list.d/ubuntu.sources /etc/apt/sources.list.d/ubuntu.sources.bak
-
编辑源配置文件:
sudo vim /etc/apt/sources.list.d/ubuntu.sources
-
替换为阿里云源(以下配置中增加了
suites
部分):Types: deb URIs: http://mirrors.aliyun.com/ubuntu/ Suites: noble noble-security noble-updates noble-proposed noble-backports Components: main restricted universe multiverse Signed-By: /usr/share/keyrings/ubuntu-archive-keyring.gpg
-
注释掉系统默认的官方源。
-
更新系统:
sudo apt-get update && sudo apt-get upgrade
其他参考换源方法:
软件源
目前尚未解决的源问题包括:
typora
源的支持问题。
通常,在安装软件时会附带软件源的配置教程。
ROS 2 的软件源
使用官方文档中提供的源即可,虽然某些情况下可能无法连接。此时推荐使用清华源(阿里源已被废弃)。
帮助文档:ROS2 软件仓库
-
下载 ROS 的 GPG Key:
sudo apt install curl gnupg2 curl -sSL https://raw.githubusercontent.com/ros/rosdistro/master/ros.key -o /usr/share/keyrings/ros-archive-keyring.gpg
如果下载失败,将文件转移到
/usr/share/keyrings
并命名为ros-archive-keyring.gpg
:sudo mv ~/Downloads/ros.key /usr/share/keyrings/ros-archive-keyring.gpg
-
替换源配置:
在/etc/apt/sources.list.d/ros2.list
中使用清华源代替官方源:deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/ros-archive-keyring.gpg] https://mirrors.tuna.tsinghua.edu.cn/ros2/ubuntu noble main
-
然后更新系统:
sudo apt-get update && sudo apt-get upgrade
软件配置
打开新世界大门
无
谷歌浏览器
建议优先安装谷歌浏览器,因为后续会删除所有
snap
应用。
直接前往 谷歌官网 下载适配的安装包。我个人是用谷歌官方的稳定版本,安装过程非常简单。
星火应用商城
如果需要安装国产软件,星火应用商城是个不错的选择。我通过它安装了微信、QQ 音乐和网易邮箱等应用,体验很好,推荐使用。
更换输入法
在 Ubuntu 系统中,输入法的选择和配置是一个常见的问题,推荐以下教程:
- 废弃教程:
在Ubuntu22.04上安装rime中文输入法的基本教程
(内容过时,不建议参考。) - 推荐教程:安装 Fcitx5 输入框架和输入法自动部署脚本(来自 Mark24)- Ubuntu 通用
建议直接参考第二篇文章,步骤清晰,适配范围广,能快速完成输入法的安装和配置。
安装 VS Code
到 VS Code 官网 下载适配的安装包完成安装。同时推荐我的一些配置教程:
另外,在使用 clang-format 前,别忘了先安装必要的依赖:
sudo apt install clang-format
以上教程中包含了详细的配置步骤,可以根据需要选择参考。
- 废弃教程:
完全删除 Snap
删除 Snap
注意顺序:在禁用服务之前,建议先禁用 socket
,否则可能会出错。
禁用开机启动
使用以下命令禁用 Snap 的相关服务,防止其在系统启动时自动加载:
sudo systemctl disable snapd.socket
sudo systemctl disable snapd.service
sudo systemctl disable snapd.seeded.service
删除 Snap 软件
-
检查已安装的 Snap 应用
使用以下命令列出当前系统中所有的 Snap 应用:snap list
-
逐一删除 Snap 应用
按顺序删除 Snap 应用,建议先卸载 Snap 商店,然后是其他应用:sudo snap remove snap-store sudo snap remove firefox sudo snap remove gnome-42-2204 sudo snap remove core20 sudo snap remove bare
-
终止运行中的 Snap 进程
如果仍然看到/usr/lib/snapd/snapd
等进程,可以使用以下命令终止:sudo killall snapd
-
移除 Snap 服务及相关残留
完全清理 Snap 的残留服务和文件:sudo apt purge snapd sudo rm -rf /snap /var/snap /var/lib/snapd ~/snap
彻底删除 Snap
-
手动清理残留文件
如果之前的步骤没有完全清除,可以手动删除 Snap 的相关目录:sudo rm -rf /snap sudo rm -rf /var/snap sudo rm -rf /var/lib/snapd sudo rm -rf ~/snap
-
验证 Snap 是否完全删除
使用以下命令检查系统中是否还有 Snap 的痕迹:which snap
如果没有输出,说明 Snap 已经被完全卸载。
禁止重新安装 Snap
为防止 Snap 被重新安装,可以通过 APT 配置来禁用相关依赖项:
-
创建一个配置文件:
sudo vim /etc/apt/preferences.d/nosnap.pref
-
在文件中输入以下内容:
Package: snapd Pin: release a=* Pin-Priority: -10
如果需要重新安装 Snap
如果后续需要重新安装 Snap,可以按照以下步骤操作:
-
重新安装 Snap 包管理器
sudo apt update sudo apt install snapd
-
启用 Snap 服务
sudo systemctl enable --now snapd.socket
-
检查 Snap 是否正常工作
snap version
如果输出版本号,说明 Snap 已成功安装并运行。
安装 Nala
nala比apt更快,而且有更多动画,看的很爽.
-
添加 Nala 的 PPA
首先需要添加 Nala 的软件源,并更新包管理器索引:sudo add-apt-repository ppa:volian/nala sudo apt update
-
安装 Nala
使用以下命令安装 Nala:sudo apt install nala
基本命令
Nala 的命令与 apt
类似.
-
更新软件包索引
sudo nala update
-
安装软件包
sudo nala install <package_name>
-
升级系统
sudo nala upgrade
-
删除软件包
sudo nala remove <package_name>
-
查看安装记录
sudo nala history
-
检查损坏并修复
sudo nala fix
Fastfetch: 系统信息显示工具
Fastfetch 是一个用于显示系统信息的工具。
安装 Fastfetch
-
使用系统包管理器安装
适用于 Ubuntu 或基于 Debian 的系统:sudo apt update sudo apt install fastfetch
-
从源码安装
如果在官方仓库中找不到 Fastfetch,可以通过源码进行安装:-
克隆 GitHub 仓库:
git clone https://github.com/SnowflakeMC/fastfetch.git
-
进入仓库目录:
cd fastfetch
-
安装:
sudo make install
-
使用 Fastfetch
-
显示系统信息
运行以下命令直接查看系统信息:fastfetch
-
常用选项
-
禁用 ASCII 图形,仅显示文字信息:
fastfetch --no-ascii
-
自定义配置文件路径:
fastfetch --config /path/to/config.conf
-
-
修改配置
配置文件通常位于~/.config/fastfetch/config.conf
,可以通过编辑该文件来自定义显示内容,比如隐藏特定信息或调整颜色主题。
Conda: Miniconda
简介
我之后会使用 Anaconda,但 Miniconda 的操作基本一致。以下是 Miniconda 的安装和配置步骤。
安装步骤
-
下载 Miniconda 安装脚本
打开终端,运行以下命令下载适用于 Linux 的 Miniconda 安装脚本:wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O miniconda.sh
-
添加执行权限
为脚本添加执行权限:chmod +x miniconda.sh
-
运行安装脚本
执行脚本并按提示完成安装:./miniconda.sh
默认安装路径为
~/miniconda3
,可根据需要修改。安装完成后,按提示添加 Conda 到 shell 配置文件。 -
初始化 Conda
安装完成后,运行以下命令初始化 Conda,使其自动加载:source ~/miniconda3/bin/activate conda init
-
重新打开终端
关闭并重新启动终端。看到(base)
提示符时,说明 Conda 已成功激活。 -
检查安装是否成功
验证安装:conda --version
-
查看 Conda 环境信息
查看环境列表:conda info --envs
如果是
(base)
环境,则无需指定环境名称。 -
确保 Python 版本匹配
如果base
环境的 Python 版本与系统不同,使用以下命令调整:conda install python=3.12.3
否则,可能在 Jupyter 中无法找到
rclpy
。
添加 Conda 镜像源
-
查看当前镜像源
conda config --show channels
-
恢复默认配置
conda config --remove-key channels
-
配置清华镜像源
编辑配置文件/home/dw/miniconda3/.condarc
,添加以下内容:channels: - defaults show_channel_urls: true default_channels: - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2 custom_channels: conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
配置环境和安装包
-
创建新环境
conda create --name myenv python=3.12
-
激活环境
conda activate myenv
-
安装需要的包
conda install tensorflow
基础优化终端
安装 Kitty
步骤 1: 安装 Kitty 终端
更新系统包并安装 Kitty:
sudo nala update
sudo nala install kitty
步骤 2: 设置 Kitty 为默认终端
通过 update-alternatives
将 Kitty 设置为默认终端:
sudo update-alternatives --config x-terminal-emulator
- 在弹出的选择菜单中,选择 Kitty(通常会显示 Kitty 的路径,例如
/usr/bin/kitty
)。 - 输入对应的数字,按回车确认。
Kitty 基本配置
1.1 创建配置文件
确保 Kitty 配置文件存在,如果没有,则创建:
mkdir -p ~/.config/kitty
touch ~/.config/kitty/kitty.conf
1.2 编辑配置文件
使用编辑器打开配置文件:
nano ~/.config/kitty/kitty.conf
1.3 基本设置
以下是我的基本设置,基于官方样式:
# 字体设置
font_family FiraCode # 设置字体为 FiraCode
font_size 14.0 # 字体大小
# 启用字体连字
enable_ligatures yes
# 设置背景透明度
background_opacity 0.85 # 透明度(0 为全透明,1 为不透明)
# 设置窗口边距
window_padding 10 # 内边距,单位:像素
# 启用软换行
soft_wrap 1
2.2 使用第三方主题
从 kitty-themes GitHub 下载主题,在 Kitty 终端中输入以下命令切换:
kitty +kitten themes
删除 Kitty
1. 使用包管理器卸载
如果通过 nala
安装 Kitty,可以使用以下命令卸载:
sudo nala remove --purge kitty
sudo nala autoremove
2. 如果是从源代码编译安装
- 进入 Kitty 源代码目录。
- 执行以下命令卸载:
sudo make uninstall
- 删除安装目录:
sudo rm -rf /opt/kitty
sudo rm /usr/local/bin/kitty
sudo rm /usr/local/bin/kitty_config
确保删除所有相关二进制文件和配置文件。
删除配置文件和缓存
删除 Kitty 的配置文件和缓存:
rm -rf ~/.config/kitty
rm -rf ~/.local/share/kitty
rm -rf ~/.cache/kitty
检查是否删除干净
检查系统中是否仍有 Kitty 的痕迹:
which kitty
如果没有输出,则说明 Kitty 已完全卸载。如果仍显示路径,可以手动删除相应文件。
base环境没出来
在阅读了官方的配置文档之后。
我们只需要添加这个指令进去就好了
code ~/.config/starship.toml
(可选)安装 NVIDIA 驱动
虽然开源驱动已经能满足大部分需求,但为了更高的性能,可以考虑安装官方驱动。
推荐参考教程:
删除 NVIDIA 驱动及其相关文件(如果发生问题)
其他参考方案:
通过 GRUB 菜单进入恢复模式
-
重启系统
- 系统启动时,按住
Shift
键,直到出现 GRUB 菜单。 - 若使用 UEFI 启动,按
Esc
键。
- 系统启动时,按住
-
选择恢复模式
在 GRUB 菜单中选择带有Recovery Mode
的内核版本。 -
进入根终端
在恢复模式菜单中,选择root
。 -
停止图形界面
如果图形界面仍在运行,使用以下命令停止:sudo systemctl stop gdm # GNOME sudo systemctl stop sddm # KDE sudo systemctl stop lightdm # LightDM
-
卸载 NVIDIA 模块
sudo rmmod nvidia_drm nvidia_modeset nvidia
确保卸载干净
-
完全卸载 NVIDIA 驱动
sudo apt-get purge '^nvidia-.*'
-
移除残留配置文件和内核模块
sudo rm -rf /lib/modules/$(uname -r)/kernel/drivers/video/nvidia* sudo rm -rf /etc/X11/xorg.conf.d/10-nvidia.conf sudo rm -rf /etc/modprobe.d/nvidia.conf sudo rm -rf /etc/modprobe.d/nvidia-installer-disable-nouveau.conf
-
更新 initramfs
sudo update-initramfs -u
-
重启计算机
sudo reboot
卸载后重新安装驱动(可选)
-
使用 NVIDIA
.run
文件安装驱动sudo ./NVIDIA-Linux-x86_64-560.31.02.run
-
通过 Ubuntu 驱动管理工具安装
sudo ubuntu-drivers autoinstall sudo reboot
验证驱动安装
-
检查 NVIDIA 驱动
nvidia-smi
如果成功,应该看到当前驱动和显卡信息,例如:
+-----------------------------------------------------------------------------+ | NVIDIA-SMI 460.80 Driver Version: 460.80 CUDA Version: 11.2 | +-----------------------------------------------------------------------------+
-
检查 NVIDIA 内核模块
lsmod | grep nvidia
应看到
nvidia
,nvidia_modeset
,nvidia_drm
等模块。
(可选)安装 ROS2-Jazzy
教程参考
- Ubuntu 24.04 安装 Jazzy 版 ROS2 的前置操作(防报错)
注意:此教程可能存在安装版本上的错误,可酌情参考。 - Ubuntu 24.04 安装 ROS2 Jazzy
说明:无需参考换源,遇到问题可通过编辑配置文件解决。
安装 Jupyter
注意事项
确保 Python 版本统一:
Jupyter 环境中的 Python 版本需与系统或 Conda 虚拟环境中的 Python 版本一致,避免依赖冲突。
检查调用环境:
在 .ipynb
文件中运行以下代码,检查是否正确调用了 Conda 环境:
import sys
print(sys.executable)
使用 Conda 安装 Jupyter
建议在 Conda 环境中安装 Jupyter,避免依赖问题:
conda install jupyter
正确安装操作
创建新虚拟环境
为减少出错可能性,建议创建一个新的虚拟环境,避免使用 base
环境。
确保 Python 版本一致,例如:
conda create -n ros2 python=3.12.3
安装 Jupyter
激活环境后,安装 Jupyter:
conda install jupyter
常见问题
- 依赖过旧
使用 Conda 安装时,可能依赖版本较低,导致无法满足 ROS2-Jazzy 的要求:- 系统
libstdc++
库版本低,缺少GLIBCXX_3.4.30
。
- 系统
- Python 版本不一致
ROS2 安装在系统环境,而 Conda 虚拟环境的 Python 版本不统一,可能导致模块如rclpy
无法加载。
参考解决方案
Jupyter nbextensions 一个拓展
Jupyter nbextensions 可以为 Jupyter Notebook 添加更多功能和工具,极大提升使用体验。
安装 jupyter_contrib_nbextensions
在 Conda 环境中运行以下命令,安装包含多个扩展和配置工具的包:
conda install -c conda-forge jupyter_contrib_nbextensions
安装并启用扩展
运行以下命令将扩展文件安装到 Jupyter 配置目录:
jupyter contrib nbextension install --user
启动 Jupyter Notebook 查看效果:
jupyter notebook
更多使用参考:
其他支持工具安装
安装一些常用的科学计算工具:
conda install numpy transforms3d