这类问题被称为平面倾斜涉及使用单一的溶子,它被旋转,平移和镜像,以瓷砖整个平面没有任何间隙或重叠。有些多边形是可被平铺的,比如正方形,而另一些则不是,比如五边形。我们现在将重点关注那些无法平铺的多边形。
举例说明,当五角形位于一个平面内时,利用同一个五角形来包围它的整个周长而不留下整个周长是不可行的。然而,有些多边形可以以这样的方式构造,它们覆盖它们的周长(电晕)而不留下间隙,但不能停止。一个例子是艾因里希·希施在1968年绘制的图形。
此外,还有一些多边形可以扩展到包含连续一周的边缘,但不能进一步扩展。安妮·方丹在1991年[1]构建的图就证明了这一点。
在这种情况下,可以填充的圆的最大数量被称为网格数。
正式的数学定义是[2]:平面的n定义为平面划分为更小的区域s或块。瓷砖的第零个电晕被定义为瓷砖本身。对于k>0,第k个日冕被定义为与(k-1)个日冕共享边界点的瓷砖集合。给予图S的Heesch数定义为k的最大值,其中存在平面in到较小区域的镶嵌,称为瓷砖。火焰的数量是最大值k,使平面在瓦片中形成和倾斜,直到零到k个冠上的所有位置都是简单的连接。这个定义在这个问题的一些工作中进行了修改,另外要求t的第0到第k个冠冕的单位是一个单连通区域。
该问题的目的是确定理论上的最大值,该问题数。已知的最大Heesch数为6如由Bojan Ba sic'在2020年[3]构造的下图所示。
任务:
2.请估计出算法复杂度的上界。
问题一:1.目的是建立一个有效的数学模型和肛门算法,使创建最大的多边形。本文应详细描述实施过程的原则以及最终结果。不需要达到或超过已知结果:然而,如果算法自动产生最大的可能结果,则令人满意。(1. The objective is to construct an eficient mathematical model and an al.gorithm that enables the creation of polygons with the largest possibleHeesch mumber. The paper should describe the principles of the algo-rithm and the implementation process in detail, as well as the final result.it is not necessary to achieve or exceed the best-known results; however, itis satisfactory if the algorithm automatically produces the largest possibleresult.)
本文针对问题1,提出一种能够构造赫施数较大的多边形的数学模型与算法。以下将从赫施数的定义与性质出发,逐步构建数学模型,并设计求解该问题的算法。 1. 问题的数学表述
平面铺砌:平面铺砌是将平面分割为不重叠的区域,每个区域称为瓦片(Tile)。铺砌的目标是保证所有瓦片完全覆盖平面且不留间隙。
赫施数定义: 令瓦片S为一个简单多边形,赫施数 H(S)定义为满足以下条件的最大整数 kkk:
存在一种平面铺砌T,使得在铺砌中某个瓦片t 的第0 到第k 冠层为简单连通区域;
对每个 i∈{0,1,...,k},第i冠层定义为与第 (i−1)冠层共享边界的瓦片集合。
设瓦片的初始位置为 t0,其第i冠层记为 Ci。赫施数满足以下条件:
2. 模型构建
-
几何约束建模 多边形 SSS 的赫施数与其几何形状密切相关。为满足赫施数的定义,瓦片之间的拼接必须满足以下几何约束: A.边界匹配: 每个瓦片的边界必须能够与相邻瓦片完全对齐。令 P1,P2,...,Pn为多边形的顶点序列,要求:
B.连通性约束: 冠层之间必须保持简单连通性。定义冠层区域为Ri,需满足:
C.递推关系: 若Ci表示第i冠层,则有:
-
优化目标建模 赫施数 H(S)的优化目标是找到使k最大化的多边形S。 目标函数为:
-
算法设计
-
初始多边形的生成 利用随机生成法或基于规则的构造法生成初始多边形S,其顶点集合 V(S)定义为:
-
冠层递归生成 通过几何操作递归生成冠层: 令 t0为铺砌的初始瓦片; 对于每个 k≥0,利用冠层生成规则:
-
连通性验证 利用拓扑方法验证当前冠层的连通性。定义冠层连通性判别函数 f(Ck):
当 f(Ck)=0时,终止递归。
-
最大赫施数求解
记录满足 f(Ck)=1的最大k,即为当前多边形S的赫施数。
4. 具体算法流程
输入:初始多边形S。 输出:多边形S的赫施数H(S)。
问题二:2.请估计出算法复杂度的上界。(2.Please give an estimate of the upper bound on the complexity of the algorithm.)