光伏发电是通过半导体材料的光电效应,将太阳能直接转化为电能的技术。光伏电站是由众多光伏发电单元组成的规模化发电设施。
光伏电站的发电功率主要由光伏板表面接收到的太阳辐射总量决定,不同季节太阳光倾角的变化导致了辐照强度的长周期变化,云量、阴雨、雾霾等气象因素导致了辐照强度短周期变化。
当光伏电站接入电网时,光伏电站发电功率的波动会对电网的功率平衡和频率调节带来不利影响。因此,准确预测光伏电站的发电功率,有助于电力调度部门提前安排调度计划,从而确保电网的功率平衡和运行安全。
光伏电站发电功率日前预测是未来24小时至48小时的发电功率进行预测。由于光伏电站上方的云量、阴雨、雾霾等气象因素的不确定性,导致光伏发电功率难以准确预测。因此,如何提升光伏电站发电功率预测精度成为当前工程领域关键技术问题。
为了考察气象条件(辐照、温度、云量等)、地理分布(经纬度、海拔、倾角)、季节等场景因素对光伏电站发电功率预测精度的影响,需要基于较长时段的历史发电功率和数值天气预报(Numerical Weather Prediction, NWP)数据进行佐证分析。为此,参赛者需自行查找符合以下要求的数据集:
表1 光伏电站的历史发电功率和NWP数据规格及要求
数据规格 | 参数值 |
数据来源(公开数据集链接) | |
光伏电站装机容量 | ___MW |
发电功率和NWP数据时间分辨率 | 采样点/15min |
发电功率和NWP数据起始-截至时间(一年) | yyyy.mm.dd- yyyy.mm.dd |
NWP属性 | 例如:气温、辐射、云量等 |
气象及光伏数据的公开获取渠道包括但不限于全球能源预测竞赛(GEFCom)、Kaggle等权威赛事平台;此外,还有ERA5、OPSD、PVOutput、PVWatts、NSRDB和NOMADS等提供相关数据集参考。根据要求,需在论文正文中以表格形式呈现参赛数据集的关键信息,并将完整数据集作为附件提交。
问题模型建立与求解
问题1:基于历史功率的光伏电站发电特性分析
基于光伏电站的地理位置信息,结合太阳辐照计算理论可发功率,研究其长周期(季节性变化)和短周期(日内波动)特性。根据实际功率与理论可发功率的偏差,分析光伏电站发电功率特性。
在问题一中,我们以光伏电站的倾斜面辐照量 为基础,构建了“理论可发功率—实际输出功率”偏差分析模型。下面给出各部分的数学表述。
-
理论可发功率模型 假设光伏组件额定峰值功率(STC 条件下)为 ,标准辐照度为,则在任意时刻 t的理论输出功率可写为
添加图片注释,不超过 140 字(可选)
在做归一化分析时,常令,简化为
添加图片注释,不超过 140 字(可选)
-
偏差定义 将实际观测功率记P_act(t),则二者之差(偏差)为
添加图片注释,不超过 140 字(可选)
添加图片注释,不超过 140 字(可选)
月度平均偏差
将样本按月分组,记第m月(m=1,…,12)包含的时刻集合为,则
日内平均偏差
将样本按小时分组,第 h 时(h=0,…,23)的平均偏差为
其中。
二维偏差矩阵(热力图用)
定义矩阵元素
通过即可绘制小时-月偏差热力图,以识别不同时段和季节的系统偏差特征。
添加图片注释,不超过 140 字(可选)
以上数学模型与指标构成了问题一的核心框架:先基于倾斜面辐照计算理论功率,再定义偏差并用 MAE、RMSE、皮尔逊相关系数评估整体拟合度;最后通过月度、日内以及二维偏差矩阵量化季节性和短周期日内波动特性,为后续功率预测修正和系统性能优化提供理论依据。
问题一的分析可分为整体拟合度评估、月度偏差分布特征、日内偏差时空分布以及误差规律探讨四个方面。
添加图片注释,不超过 140 字(可选)
添加图片注释,不超过 140 字(可选)
添加图片注释,不超过 140 字(可选)
添加图片注释,不超过 140 字(可选)
问题2:建立基于历史功率的光伏电站日前发电功率预测模型
建立基于历史功率的光伏电站日前发电功率预测模型,进行发电功率预测,根据附件1中考核要求分析你所采用方法的准确性。
针对问题二“基于历史功率的日前发电功率预测”,可将建模过程形式化为以下数学表达。
-
滞后特征构造 令光伏电站在时刻的实际观测功率为 我们以过去小时的功率序列作为预测输入。构造特征向量 其中,通常取 L=24,即利用前 24 小时数据。
-
线性模型(Ridge 回归) 采用带有正则化的线性回归模型,将预测值 P^(t)\hat P(t)P^(t) 表示为 其中 w∈RL为回归系数向量,bbb 为截距项。 模型通过最小化以下带正则项的拟合损失得到参数 {w,b}:
添加图片注释,不超过 140 字(可选)
添加图片注释,不超过 140 字(可选)
其中 {ti} 为训练样本时刻,α>0为正则化系数。
-
预测与滚动窗口 在训练完参数后,对未来 24 小时(t=T+1,…,T+24)依次做前馈预测: 然后将作为新的历史输入,循环得到 ,直至。
-
性能评价指标
记测试集时刻序列为,真实功率为,预测为,则采用以下常用统计指标衡量预测准确性:
(1)平均绝对误差 (MAE)
2.均方根误差 (RMSE)
决定系数 (R²)
平均绝对百分比误差 (MAPE)
添加图片注释,不超过 140 字(可选)
问题二的日前功率预测结果可以从整体拟合效果、点云分布特征、误差分布以及评价指标四个层面进行分析:
预测结果 |
---|
3.43277206 |
3.70643617 |
3.68863603 |
3.6995983 |
3.15666818 |
3.18305214 |
3.13657976 |
3.13845581 |
3.02382871 |
3.02313002 |
2.9985499 |
1.66994951 |
1.66888755 |
1.63416114 |
1.54228527 |
1.44726743 |
1.46793839 |
1.51337913 |
1.49780697 |
1.47643014 |
1.46692127 |
1.45446886 |
1.4253201 |
1.3937318 |
添加图片注释,不超过 140 字(可选)
存在滞后。
添加图片注释,不超过 140 字(可选)
添加图片注释,不超过 140 字(可选)
添加图片注释,不超过 140 字(可选)
问题3:建立融入NWP信息的光伏电站日前发电功率预测模型
建立融入NWP信息的光伏电站日前发电功率预测模型,进行发电功率预测,根据预测结果,分析评价融入NWP信息能否有效提高预测精度;若可以,请给出提高预测精度的场景划分方案,并进行验证。
问题4:探讨NWP空间降尺度能否提高光伏电站发电功率预测精度
传统气象预报空间分辨率尺度较大(通常在千米级别),而MW级光伏电站覆盖面积可能小于天气预报的空间尺度。在现有的NWP数据基础上,通过机器学习、空间插值、统计模型等得到更小空间尺度的气象预报信息(NWP空间降尺度)可否提高光伏功率预测精度。请结合空间降尺度预测结果,检验方法的可行性,并分析其原因。