基于强化学习的NAS算法解析
关键词:强化学习,神经网络结构搜索,神经架构搜索(NAS),遗传算法,深度学习,优化算法
1. 背景介绍
1.1 问题由来
在深度学习时代,模型的设计至关重要。当前的设计方法往往依赖于经验,即在多个候选结构中手动选择最优的架构。然而,这种设计方式存在许多缺点:它需要大量的手工尝试和调整,耗时耗力;它容易忽略一些潜在的优秀架构,导致性能未能充分发挥;它通常只适用于固定领域,缺乏通用性。
针对这些问题,神经网络结构搜索(NAS)技术应运而生。NAS技术旨在自动发现最优的神经网络结构,以最小化模型设计和训练成本,同时提升模型性能。其中,基于强化学习的NAS(RL-NAS)方法在近年来的研究中尤为引人注目。通过模拟生物进化的自然选择过程,RL-NAS能够从数千种候选结构中高效搜索出最优的结构,提升了模型设计自动化水平,推动了深度学习的发展。
1.2 问题核心关键点
基于强化学习的NAS算法,通过模拟生物进化过程,自动设计神经网络结构。其核心思想为:将设计过程视为一个强化学习问题,使用奖励函数来评估模