联邦强化学习:分布式决策的新范式
在人工智能的诸多领域中,强化学习因其在复杂决策环境下的强大表现,成为推动深度学习技术发展的核心驱动力。但随着模型规模的增大,传统集中式训练方法面临着计算资源消耗大、数据分布不均衡等挑战。联邦强化学习(Federated Reinforcement Learning, FRL),作为一种新型分布式决策范式,通过在多个分布式节点上进行模型更新,在满足数据隐私和安全要求的同时,提升了模型训练效率和泛化能力。本文旨在系统梳理联邦强化学习的核心概念、算法原理、操作步骤及实际应用,并展望其未来发展趋势。
1. 背景介绍
1.1 问题由来
强化学习在近年来的迅猛发展,成功地应用于游戏AI、机器人控制、自动驾驶、推荐系统等领域,展示了其在复杂环境下的强大决策能力。但随着模型规模的增大,集中式训练方法面临诸多挑战:
- 计算资源消耗大:大规模神经网络需要巨大的计算资源和存储空间,集中式训练往往需要高性能计算设备。
- 数据分布不均衡:各个分布式节点往往掌握不同类型、规模的数据,集中式训练无法充分利用所有数据。
- 模型鲁棒性差:单个节点上训练得到