基于Matlab/Simulink进行搭建自动驾驶汽车建模.

自动驾驶汽车建模

包括:
自适应巡航控制系统ACC
自动车道偏置全功能
自动变道(ALC)全功能
结合控制模型与MATLAB路径跟踪控制系统
协同自适应巡航控制
巡航控制系统
自定义组合控制模型
高速辅助全功能
车道中心辅助全功能
带模型预测控制MPC的横向控制
纯追踪控制
几何路径跟踪控制(Stanley control)
车辆纵向动力学
在这里插入图片描述
在这里插入图片描述


以下是基于Matlab/Simulink搭建自动驾驶汽车建模的详细步骤和代码实现。我们将使用Simulink中的模块以及Matlab脚本来完成一个简单的自动驾驶汽车模型,包括车辆动力学、路径规划、传感器模拟(如激光雷达或摄像头)以及控制算法。


1. 系统设计概述

一个典型的自动驾驶汽车模型通常包括以下几个部分:

  1. 车辆动力学模型:描述车辆的运动学或动力学行为。
  2. 传感器模拟:模拟激光雷达、摄像头或其他传感器数据。
  3. 路径规划与决策:生成参考路径并进行轨迹跟踪。
  4. 控制器设计:实现车辆的速度和转向控制。

2. Simulink 模型搭建

2.1 车辆动力学模型

我们使用车辆运动学模型来描述车辆的行为。运动学模型的基本公式如下:

[
\begin{aligned}
\dot{x} &= v \cdot \cos(\theta) \
\dot{y} &= v \cdot \sin(\theta) \
\dot{\theta} &= \frac{v}{L} \cdot \tan(\delta)
\end{aligned}
]

其中:

  • (x, y) 是车辆的位置,
  • (v) 是车速,
  • (\theta) 是车辆的航向角,
  • (\delta) 是前轮转角,
  • (L) 是车辆轴距。

在 Simulink 中,可以使用 IntegratorMath Function 模块实现这些方程。


2.2 传感器模拟

我们可以使用 Simulink 的 Random Number 模块模拟噪声数据,并结合 ScopeXY Graph 显示传感器输出。例如,模拟激光雷达的距离测量数据。


2.3 路径规划

路径规划可以通过 Matlab 脚本生成一条参考路径,例如直线路径或曲线路径。然后在 Simulink 中使用 Lookup TableInterpolation 模块实现路径跟踪。


2.4 控制器设计

使用 PID 控制器或 MPC(模型预测控制)实现车辆的速度和转向控制。Simulink 提供了内置的 PID ControllerMPC Controller 模块。


3. 代码实现

3.1 车辆动力学模型

创建一个名为 VehicleDynamics.slx 的 Simulink 模型,包含以下模块:

  • 输入信号:v(速度)、\delta(前轮转角)。
  • 积分器:用于计算 (x, y, \theta)。
  • 数学运算:实现运动学方程。
% 在命令窗口运行以下代码以生成车辆动力学模型
open_system('VehicleDynamics.slx');

3.2 路径规划

使用 Matlab 脚本生成参考路径。例如,生成一条沿正弦曲线的路径:

% 生成参考路径
t = linspace(0, 10, 100); % 时间范围
x_ref = t;                % 参考路径 x 坐标
y_ref = sin(t);           % 参考路径 y 坐标

% 绘制路径
figure;
plot(x_ref, y_ref, 'r--', 'LineWidth', 2);
xlabel('X Position');
ylabel('Y Position');
title('Reference Path');
grid on;

% 将路径保存到工作区
assignin('base', 'x_ref', x_ref);
assignin('base', 'y_ref', y_ref);

3.3 控制器设计

在 Simulink 中添加一个 PID 控制器模块,用于控制车辆的转向角度,使其跟踪参考路径。

% 配置 PID 控制器参数
pid_controller = pid(1, 0.1, 0.01); % P=1, I=0.1, D=0.01
save_system('ControllerDesign.slx');

4. 完整 Simulink 模型

将上述模块整合到一个完整的 Simulink 模型中,命名为 AutonomousVehicleModel.slx。该模型包括以下部分:

  1. 输入模块:速度和转向角度。
  2. 车辆动力学模块:实现运动学方程。
  3. 路径规划模块:生成参考路径。
  4. 控制器模块:实现轨迹跟踪。
  5. 输出模块:显示车辆位置和路径跟踪结果。

5. 运行与测试

  1. 打开 Simulink 模型 AutonomousVehicleModel.slx
  2. 运行模型,观察车辆是否能够成功跟踪参考路径。
  3. 调整 PID 参数或路径规划算法,优化系统性能。

6. 扩展功能

  • 添加激光雷达或摄像头模拟模块,实现障碍物检测。
  • 使用深度学习工具箱(如 YOLO 或 SSD)进行目标识别。
  • 集成 ROS(机器人操作系统)进行实时仿真。
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值