基于免疫优化算法配送中心选址matlab代码,物流配送中心选址问题

基于免疫优化算法配送中心选址matlab代码,物流配送中心选址问题
可以修改需求点坐标,需求点的需求量,备选中心坐标,配送中心个数。

在这里插入图片描述
在这里插入图片描述

以下是基于免疫优化算法(Immune Optimization Algorithm, IOA)解决物流配送中心选址问题的 MATLAB 代码示例。该问题通常涉及在多个候选位置中选择最佳的配送中心位置,以最小化总成本(如运输成本、建设成本等)。


问题描述

假设:

  1. m 个客户点和 n 个候选配送中心。
  2. 每个客户点的需求量已知。
  3. 每个候选配送中心的建设成本和容量限制已知。
  4. 目标是最小化总成本,包括配送成本和建设成本。

MATLAB 代码

% 免疫优化算法解决物流配送中心选址问题
clc;
clear;
close all;

%% 参数设置
m = 10; % 客户点数量
n = 5;  % 候选配送中心数量
pop_size = 20; % 种群规模
max_iter = 100; % 最大迭代次数
mutation_rate = 0.1; % 变异概率
crossover_rate = 0.8; % 交叉概率

% 客户需求量
demand = randi([10, 50], 1, m);

% 配送中心的固定建设成本
fixed_cost = randi([100, 200], 1, n);

% 配送中心到客户点的距离矩阵 (随机生成)
distance = randi([10, 50], n, m);

% 单位运输成本
transport_cost = 1;

% 初始化种群
population = randi([0, 1], pop_size, n);

%% 免疫优化算法主循环
best_fitness = inf;
best_solution = [];

for iter = 1:max_iter
    fitness_values = zeros(pop_size, 1);
    
    % 计算适应度值
    for i = 1:pop_size
        solution = population(i, :);
        total_cost = 0;
        
        % 计算建设成本
        construction_cost = sum(solution .* fixed_cost);
        
        % 计算配送成本
        for j = 1:m
            min_delivery_cost = inf;
            for k = 1:n
                if solution(k) == 1
                    cost = distance(k, j) * transport_cost * demand(j);
                    if cost < min_delivery_cost
                        min_delivery_cost = cost;
                    end
                end
            end
            total_cost = total_cost + min_delivery_cost;
        end
        
        % 总成本 = 建设成本 + 配送成本
        total_cost = construction_cost + total_cost;
        fitness_values(i) = total_cost;
    end
    
    % 找到当前最优解
    [min_fitness, idx] = min(fitness_values);
    if min_fitness < best_fitness
        best_fitness = min_fitness;
        best_solution = population(idx, :);
    end
    
    % 选择操作 (保留适应度高的个体)
    sorted_fitness = sort(fitness_values);
    elite_num = round(pop_size * 0.2); % 精英保留比例
    elite_indices = find(ismember(fitness_values, sorted_fitness(1:elite_num)));
    new_population = population(elite_indices, :);
    
    % 交叉操作
    while size(new_population, 1) < pop_size
        parent1_idx = randi(elite_num);
        parent2_idx = randi(elite_num);
        parent1 = new_population(parent1_idx, :);
        parent2 = new_population(parent2_idx, :);
        
        if rand < crossover_rate
            crossover_point = randi(n-1);
            child1 = [parent1(1:crossover_point), parent2(crossover_point+1:end)];
            child2 = [parent2(1:crossover_point), parent1(crossover_point+1:end)];
            new_population = [new_population; child1; child2];
        else
            new_population = [new_population; parent1; parent2];
        end
    end
    
    % 变异操作
    for i = 1:size(new_population, 1)
        if rand < mutation_rate
            mutation_point = randi(n);
            new_population(i, mutation_point) = 1 - new_population(i, mutation_point);
        end
    end
    
    % 更新种群
    population = new_population(1:pop_size, :);
end

%% 输出结果
disp('最优解:');
disp(best_solution);
disp(['最优总成本: ', num2str(best_fitness)]);

代码说明

  1. 参数设置:定义了客户数量、候选配送中心数量、种群规模、迭代次数等参数。
  2. 初始化种群:随机生成初始种群,每个个体表示一个可能的配送中心选址方案。
  3. 适应度计算:计算每个方案的总成本,包括建设成本和配送成本。
  4. 选择操作:保留适应度最高的个体作为精英。
  5. 交叉与变异:通过交叉和变异产生新个体,增加种群多样性。
  6. 输出结果:最终输出最优解和对应的总成本。

在这里插入图片描述

运行结果

运行上述代码后,程序会输出最优的配送中心选址方案(用 0 和 1 表示是否选择某个配送中心)以及对应的最小总成本。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值