基于免疫优化算法配送中心选址matlab代码,物流配送中心选址问题
可以修改需求点坐标,需求点的需求量,备选中心坐标,配送中心个数。
以下是基于免疫优化算法(Immune Optimization Algorithm, IOA)解决物流配送中心选址问题的 MATLAB 代码示例。该问题通常涉及在多个候选位置中选择最佳的配送中心位置,以最小化总成本(如运输成本、建设成本等)。
问题描述
假设:
- 有
m
个客户点和n
个候选配送中心。 - 每个客户点的需求量已知。
- 每个候选配送中心的建设成本和容量限制已知。
- 目标是最小化总成本,包括配送成本和建设成本。
MATLAB 代码
% 免疫优化算法解决物流配送中心选址问题
clc;
clear;
close all;
%% 参数设置
m = 10; % 客户点数量
n = 5; % 候选配送中心数量
pop_size = 20; % 种群规模
max_iter = 100; % 最大迭代次数
mutation_rate = 0.1; % 变异概率
crossover_rate = 0.8; % 交叉概率
% 客户需求量
demand = randi([10, 50], 1, m);
% 配送中心的固定建设成本
fixed_cost = randi([100, 200], 1, n);
% 配送中心到客户点的距离矩阵 (随机生成)
distance = randi([10, 50], n, m);
% 单位运输成本
transport_cost = 1;
% 初始化种群
population = randi([0, 1], pop_size, n);
%% 免疫优化算法主循环
best_fitness = inf;
best_solution = [];
for iter = 1:max_iter
fitness_values = zeros(pop_size, 1);
% 计算适应度值
for i = 1:pop_size
solution = population(i, :);
total_cost = 0;
% 计算建设成本
construction_cost = sum(solution .* fixed_cost);
% 计算配送成本
for j = 1:m
min_delivery_cost = inf;
for k = 1:n
if solution(k) == 1
cost = distance(k, j) * transport_cost * demand(j);
if cost < min_delivery_cost
min_delivery_cost = cost;
end
end
end
total_cost = total_cost + min_delivery_cost;
end
% 总成本 = 建设成本 + 配送成本
total_cost = construction_cost + total_cost;
fitness_values(i) = total_cost;
end
% 找到当前最优解
[min_fitness, idx] = min(fitness_values);
if min_fitness < best_fitness
best_fitness = min_fitness;
best_solution = population(idx, :);
end
% 选择操作 (保留适应度高的个体)
sorted_fitness = sort(fitness_values);
elite_num = round(pop_size * 0.2); % 精英保留比例
elite_indices = find(ismember(fitness_values, sorted_fitness(1:elite_num)));
new_population = population(elite_indices, :);
% 交叉操作
while size(new_population, 1) < pop_size
parent1_idx = randi(elite_num);
parent2_idx = randi(elite_num);
parent1 = new_population(parent1_idx, :);
parent2 = new_population(parent2_idx, :);
if rand < crossover_rate
crossover_point = randi(n-1);
child1 = [parent1(1:crossover_point), parent2(crossover_point+1:end)];
child2 = [parent2(1:crossover_point), parent1(crossover_point+1:end)];
new_population = [new_population; child1; child2];
else
new_population = [new_population; parent1; parent2];
end
end
% 变异操作
for i = 1:size(new_population, 1)
if rand < mutation_rate
mutation_point = randi(n);
new_population(i, mutation_point) = 1 - new_population(i, mutation_point);
end
end
% 更新种群
population = new_population(1:pop_size, :);
end
%% 输出结果
disp('最优解:');
disp(best_solution);
disp(['最优总成本: ', num2str(best_fitness)]);
代码说明
- 参数设置:定义了客户数量、候选配送中心数量、种群规模、迭代次数等参数。
- 初始化种群:随机生成初始种群,每个个体表示一个可能的配送中心选址方案。
- 适应度计算:计算每个方案的总成本,包括建设成本和配送成本。
- 选择操作:保留适应度最高的个体作为精英。
- 交叉与变异:通过交叉和变异产生新个体,增加种群多样性。
- 输出结果:最终输出最优解和对应的总成本。
—
运行结果
运行上述代码后,程序会输出最优的配送中心选址方案(用 0 和 1 表示是否选择某个配送中心)以及对应的最小总成本。