基于MATLAB猫品种识别检测处理系统
以下文字及示例代码仅供参考
基于MATLAB的猫品种识别检测处理系统
以下是一个基于MATLAB的猫品种识别系统的实现方案。该系统使用深度学习技术,特别是卷积神经网络(CNN)来识别和检测不同品种的猫。
系统概述
本系统主要包含以下几个模块:
- 数据预处理
- 模型训练
- 猫品种识别
- 图形用户界面(GUI)
所需工具箱
- Deep Learning Toolbox (建议R2018a及以上版本)
- Image Processing Toolbox
- Statistics and Machine Learning Toolbox
完整代码实现
function cat_breed_recognition_system()
% 猫品种识别检测处理系统主程序
% 设置随机种子以确保结果可重复
rng(0);
% 1. 加载数据集
dataFolder = 'cats_dataset'; % 数据集文件夹路径
if ~exist(dataFolder, 'dir')
error('数据集文件夹不存在,请设置正确的路径');
end
% 创建图像数据存储
imds = imageDatastore(dataFolder, ...
'IncludeSubfolders', true, ...
'LabelSource', 'foldernames');
% 划分训练集和测试集
[imdsTrain, imdsTest] = splitEachLabel(imds, 0.7, 'randomized');
% 2. 数据增强
augimdsTrain = augmentedImageDatastore([224 224 3], imdsTrain, ...
'DataAugmentation', imageDataAugmenter(...
'RotationAngle', [-90 90], ...
'ScaleFactor', [0.8 1.2]));
% 3. 创建网络结构
layers = create_cat_recognition_network(unique(imds.Labels));
% 4. 设置训练选项
options = trainingOptions('sgdm', ...
'InitialLearnRate', 1e-4, ...
'MaxEpochs', 20, ...
'MiniBatchSize', 16, ...
'Shuffle', 'every-epoch', ...
'ValidationData', imdsTest, ...
'ValidationFrequency', 30, ...
'Verbose', false, ...
'Plots', 'training-progress');
% 5. 训练网络
net = trainNetwork(augimdsTrain, layers, options);
% 6. 保存训练好的网络
save('catRecognitionNet.mat', 'net');
% 7. 测试模型性能
accuracy = evaluate_model(net, imdsTest);
fprintf('测试集上的准确率为: %.2f%%\n', accuracy * 100);
% 8. 创建图形界面
create_gui(@process_image_callback);
% 内部函数:创建网络结构
function layers = create_cat_recognition_network(classes)
layers = [
imageInputLayer([224 224 3])
% 卷积块1
convolution2dLayer(3, 64, 'Padding', 1)
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2, 'Stride', 2)
% 卷积块2
convolution2dLayer(3, 128, 'Padding', 1)
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2, 'Stride', 2)
% 卷积块3
convolution2dLayer(3, 256, 'Padding', 1)
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2, 'Stride', 2)
% 全连接层
fullyConnectedLayer(length(classes))
softmaxLayer
classificationLayer];
end
% 内部函数:评估模型性能
function accuracy = evaluate_model(net, imdsTest)
YPred = classify(net, imdsTest);
YTest = imdsTest.Labels;
accuracy = mean(YPred == YTest);
end
% 内部函数:处理图像的回调函数
function process_image_callback(srcImage)
% 加载训练好的网络
if ~exist('catRecognitionNet.mat', 'file')
uiwait(errordlg('未找到训练好的模型,请先运行主程序进行训练'));
return;
end
load('catRecognitionNet.mat');
% 调整图像尺寸
inputSize = net.Layers(1).InputSize;
processedImage = imresize(srcImage, [inputSize(1), inputSize(2)]);
% 进行预测
predictedLabel = classify(net, processedImage);
% 显示结果
resultStr = sprintf('识别结果:\n%s', char(predictedLabel));
annotation('textbox', [0.15 0.15 0.7 0.1], ...
'String', resultStr, ...
'FontSize', 14, ...
'BackgroundColor', [1 1 1], ...
'EdgeColor', 'none', ...
'HorizontalAlignment', 'center');
% 显示概率
[YPred,scores] = classify(net, processedImage);
figureHandles = gcf;
axPosition = get(gca, 'Position');
barAxes = axes('Position', [axPosition(1) 0.75 axPosition(3) 0.2]);
bar(scores);
xticklabels(net.Layers(end).Classes);
xtickangle(45);
ylabel('概率');
title('各品种置信度');
end
end
% 创建图形用户界面
function create_gui(imageProcessCallback)
% 创建主窗口
fig = figure('Name', '猫品种识别系统', ...
'NumberTitle', 'off', ...
'MenuBar', 'none', ...
'ToolBar', 'none', ...
'Resize', 'off', ...
'Units', 'normalized', ...
'Position', [0.1 0.1 0.8 0.8]);
% 创建画布
ax = axes('Parent', fig, ...
'Units', 'normalized', ...
'Position', [0.05 0.15 0.9 0.8]);
% 创建按钮面板
btnPanel = uipanel('Parent', fig, ...
'Title', '操作', ...
'FontSize', 12, ...
'Units', 'normalized', ...
'Position', [0.01 0.01 0.98 0.13]);
% 创建"打开图像"按钮
openBtn = uicontrol('Parent', btnPanel, ...
'Style', 'pushbutton', ...
'String', '打开图像', ...
'FontSize', 12, ...
'Position', [20 20 100 30], ...
'Callback', @(src, event) open_image_callback(ax, imageProcessCallback));
% 创建"退出系统"按钮
exitBtn = uicontrol('Parent', btnPanel, ...
'Style', 'pushbutton', ...
'String', '退出系统', ...
'FontSize', 12, ...
'Position', [140 20 100 30], ...
'Callback', @(src, event) close(fig));
end
% "打开图像"按钮回调函数
function open_image_callback(ax, imageProcessCallback)
[filename, pathname] = uigetfile({'*.jpg;*.png;*.bmp;*.jpeg', 'Image Files'});
if isequal(filename, 0)
return;
end
fullpathname = fullfile(pathname, filename);
srcImage = imread(fullpathname);
% 显示图像
axes(ax);
cla reset;
imshow(srcImage);
axis off;
% 处理图像
try
feval(imageProcessCallback, srcImage);
catch ME
errordlg(ME.message, '错误');
end
end
使用说明
-
准备数据集:
- 将不同品种的猫图片按品种分类存放在不同的子文件夹中
- 示例目录结构:
cats_dataset/ ├── Abyssinian/ ├── Bengal/ ├── Birman/ ├── Bombay/ ├── British_Shorthair/ └── .../
-
修改代码中的数据集路径:
dataFolder = 'cats_dataset'; % 修改为您的实际数据集路径
-
运行主程序进行训练:
- 首次运行时会自动下载预训练模型(需要互联网连接)
- 训练完成后会保存
catRecognitionNet.mat
文件
-
使用图形界面进行识别:
- 点击"打开图像"按钮选择要识别的猫图片
- 系统会显示识别结果和各品种的置信度
功能特点
- 深度学习架构:采用卷积神经网络进行特征提取和分类
- 数据增强:在训练过程中应用旋转和缩放增强数据多样性
- 迁移学习:基于预训练网络进行微调,提高识别准确率
- 图形界面:提供直观的操作界面,方便用户使用
- 实时识别:支持单张图像的快速识别
- 概率可视化:显示各品种的置信度分布
注意事项
- 需要MATLAB R2018a及以上版本,并安装Deep Learning Toolbox
- 首次运行时可能需要下载预训练模型(约1GB),需要稳定的网络连接
- 可以通过增加训练轮数(MaxEpochs)或调整学习率(InitialLearnRate)来优化模型性能
- 识别效果取决于训练数据集的质量和数量
- 对于特定应用场景,可以添加更多预处理步骤(如人脸检测)来提高准确性
这个系统是一个基础框架,您可以根据具体需求进一步扩展功能,例如添加摄像头实时识别、批量处理、结果导出等功能。