基于MATLAB猫品种识别检测处理系统

基于MATLAB猫品种识别检测处理系统

在这里插入图片描述
以下文字及示例代码仅供参考

基于MATLAB的猫品种识别检测处理系统

以下是一个基于MATLAB的猫品种识别系统的实现方案。该系统使用深度学习技术,特别是卷积神经网络(CNN)来识别和检测不同品种的猫。

系统概述

本系统主要包含以下几个模块:

  1. 数据预处理
  2. 模型训练
  3. 猫品种识别
  4. 图形用户界面(GUI)

所需工具箱

  • Deep Learning Toolbox (建议R2018a及以上版本)
  • Image Processing Toolbox
  • Statistics and Machine Learning Toolbox
    在这里插入图片描述

完整代码实现

function cat_breed_recognition_system()
    % 猫品种识别检测处理系统主程序
    
    % 设置随机种子以确保结果可重复
    rng(0);
    
    % 1. 加载数据集
    dataFolder = 'cats_dataset'; % 数据集文件夹路径
    if ~exist(dataFolder, 'dir')
        error('数据集文件夹不存在,请设置正确的路径');
    end
    
    % 创建图像数据存储
    imds = imageDatastore(dataFolder, ...
        'IncludeSubfolders', true, ...
        'LabelSource', 'foldernames');
    
    % 划分训练集和测试集
    [imdsTrain, imdsTest] = splitEachLabel(imds, 0.7, 'randomized');
    
    % 2. 数据增强
    augimdsTrain = augmentedImageDatastore([224 224 3], imdsTrain, ...
        'DataAugmentation', imageDataAugmenter(...
            'RotationAngle', [-90 90], ...
            'ScaleFactor', [0.8 1.2]));
    
    % 3. 创建网络结构
    layers = create_cat_recognition_network(unique(imds.Labels));
    
    % 4. 设置训练选项
    options = trainingOptions('sgdm', ...
        'InitialLearnRate', 1e-4, ...
        'MaxEpochs', 20, ...
        'MiniBatchSize', 16, ...
        'Shuffle', 'every-epoch', ...
        'ValidationData', imdsTest, ...
        'ValidationFrequency', 30, ...
        'Verbose', false, ...
        'Plots', 'training-progress');
    
    % 5. 训练网络
    net = trainNetwork(augimdsTrain, layers, options);
    
    % 6. 保存训练好的网络
    save('catRecognitionNet.mat', 'net');
    
    % 7. 测试模型性能
    accuracy = evaluate_model(net, imdsTest);
    fprintf('测试集上的准确率为: %.2f%%\n', accuracy * 100);
    
    % 8. 创建图形界面
    create_gui(@process_image_callback);
    
    % 内部函数:创建网络结构
    function layers = create_cat_recognition_network(classes)
        layers = [
            imageInputLayer([224 224 3])
            
            % 卷积块1
            convolution2dLayer(3, 64, 'Padding', 1)
            batchNormalizationLayer
            reluLayer
            maxPooling2dLayer(2, 'Stride', 2)
            
            % 卷积块2
            convolution2dLayer(3, 128, 'Padding', 1)
            batchNormalizationLayer
            reluLayer
            maxPooling2dLayer(2, 'Stride', 2)
            
            % 卷积块3
            convolution2dLayer(3, 256, 'Padding', 1)
            batchNormalizationLayer
            reluLayer
            maxPooling2dLayer(2, 'Stride', 2)
            
            % 全连接层
            fullyConnectedLayer(length(classes))
            softmaxLayer
            classificationLayer];
    end
    
    % 内部函数:评估模型性能
    function accuracy = evaluate_model(net, imdsTest)
        YPred = classify(net, imdsTest);
        YTest = imdsTest.Labels;
        accuracy = mean(YPred == YTest);
    end
    
    % 内部函数:处理图像的回调函数
    function process_image_callback(srcImage)
        % 加载训练好的网络
        if ~exist('catRecognitionNet.mat', 'file')
            uiwait(errordlg('未找到训练好的模型,请先运行主程序进行训练'));
            return;
        end
        load('catRecognitionNet.mat');
        
        % 调整图像尺寸
        inputSize = net.Layers(1).InputSize;
        processedImage = imresize(srcImage, [inputSize(1), inputSize(2)]);
        
        % 进行预测
        predictedLabel = classify(net, processedImage);
        
        % 显示结果
        resultStr = sprintf('识别结果:\n%s', char(predictedLabel));
        annotation('textbox', [0.15 0.15 0.7 0.1], ...
            'String', resultStr, ...
            'FontSize', 14, ...
            'BackgroundColor', [1 1 1], ...
            'EdgeColor', 'none', ...
            'HorizontalAlignment', 'center');
        
        % 显示概率
        [YPred,scores] = classify(net, processedImage);
        figureHandles = gcf;
        axPosition = get(gca, 'Position');
        barAxes = axes('Position', [axPosition(1) 0.75 axPosition(3) 0.2]);
        bar(scores);
        xticklabels(net.Layers(end).Classes);
        xtickangle(45);
        ylabel('概率');
        title('各品种置信度');
    end
end

% 创建图形用户界面
function create_gui(imageProcessCallback)
    % 创建主窗口
    fig = figure('Name', '猫品种识别系统', ...
                 'NumberTitle', 'off', ...
                 'MenuBar', 'none', ...
                 'ToolBar', 'none', ...
                 'Resize', 'off', ...
                 'Units', 'normalized', ...
                 'Position', [0.1 0.1 0.8 0.8]);
    
    % 创建画布
    ax = axes('Parent', fig, ...
              'Units', 'normalized', ...
              'Position', [0.05 0.15 0.9 0.8]);
    
    % 创建按钮面板
    btnPanel = uipanel('Parent', fig, ...
                       'Title', '操作', ...
                       'FontSize', 12, ...
                       'Units', 'normalized', ...
                       'Position', [0.01 0.01 0.98 0.13]);
    
    % 创建"打开图像"按钮
    openBtn = uicontrol('Parent', btnPanel, ...
                        'Style', 'pushbutton', ...
                        'String', '打开图像', ...
                        'FontSize', 12, ...
                        'Position', [20 20 100 30], ...
                        'Callback', @(src, event) open_image_callback(ax, imageProcessCallback));
    
    % 创建"退出系统"按钮
    exitBtn = uicontrol('Parent', btnPanel, ...
                        'Style', 'pushbutton', ...
                        'String', '退出系统', ...
                        'FontSize', 12, ...
                        'Position', [140 20 100 30], ...
                        'Callback', @(src, event) close(fig));
end

% "打开图像"按钮回调函数
function open_image_callback(ax, imageProcessCallback)
    [filename, pathname] = uigetfile({'*.jpg;*.png;*.bmp;*.jpeg', 'Image Files'});
    
    if isequal(filename, 0)
        return;
    end
    
    fullpathname = fullfile(pathname, filename);
    srcImage = imread(fullpathname);
    
    % 显示图像
    axes(ax);
    cla reset;
    imshow(srcImage);
    axis off;
    
    % 处理图像
    try
        feval(imageProcessCallback, srcImage);
    catch ME
        errordlg(ME.message, '错误');
    end
end

使用说明

  1. 准备数据集:

    • 将不同品种的猫图片按品种分类存放在不同的子文件夹中
    • 示例目录结构:
      cats_dataset/
          ├── Abyssinian/
          ├── Bengal/
          ├── Birman/
          ├── Bombay/
          ├── British_Shorthair/
          └── .../
      
  2. 修改代码中的数据集路径:

    dataFolder = 'cats_dataset'; % 修改为您的实际数据集路径
    
  3. 运行主程序进行训练:

    • 首次运行时会自动下载预训练模型(需要互联网连接)
    • 训练完成后会保存catRecognitionNet.mat文件
  4. 使用图形界面进行识别:

    • 点击"打开图像"按钮选择要识别的猫图片
    • 系统会显示识别结果和各品种的置信度

功能特点

  1. 深度学习架构:采用卷积神经网络进行特征提取和分类
  2. 数据增强:在训练过程中应用旋转和缩放增强数据多样性
  3. 迁移学习:基于预训练网络进行微调,提高识别准确率
  4. 图形界面:提供直观的操作界面,方便用户使用
  5. 实时识别:支持单张图像的快速识别
  6. 概率可视化:显示各品种的置信度分布

注意事项

  1. 需要MATLAB R2018a及以上版本,并安装Deep Learning Toolbox
  2. 首次运行时可能需要下载预训练模型(约1GB),需要稳定的网络连接
  3. 可以通过增加训练轮数(MaxEpochs)或调整学习率(InitialLearnRate)来优化模型性能
  4. 识别效果取决于训练数据集的质量和数量
  5. 对于特定应用场景,可以添加更多预处理步骤(如人脸检测)来提高准确性

这个系统是一个基础框架,您可以根据具体需求进一步扩展功能,例如添加摄像头实时识别、批量处理、结果导出等功能。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值