近年来,基于Segment Anything Model(SAM)的视觉分割技术取得了显著进展。从弱监督学习到多模态融合,SAM不断拓展其应用场景,为计算机视觉领域带来了前所未有的灵活性和高效性,推动了自动驾驶、医疗影像分析等领域的技术革新。
最新研究通过弱监督学习和多模态融合,实现了无需密集标注的高精度分割,大幅降低了数据标注成本,同时提升了模型的泛化能力。
这种技术突破将为医疗影像分析、自动驾驶等领域带来更高效、更精准的视觉理解能力,助力行业智能化发展。
我整理了10种【SAM分割】的相关论文,全部论文PDF版可以关注工棕号{AI因斯坦}
回复 “SAM分割”领取~
1.MedCLIP-SAM: Bridging Text and Image Towards Universal Medical Image Segmentation
文章提出 MedCLIP-SAM 框架,结合 CLIP 和 SAM 模型,通过新损失函数微调及零样本、弱监督学习策略实现医学图像分割。经多种数据集验证,该框架在不同任务和模态下表现出色。
-
创新点
1.提出解耦硬负噪声对比估计(DHN-NCE)损失函数,提升 BiomedCLIP 模型微调效率,优化小批量训练效果。
2.首次将 CLIP 和 SAM 结合用于放射学任务的零样本医学图像分割,提供文本提示交互功能。
3.探索弱监督策略优化零样本分割结果,增强模型在不同医学图像模态下的分割能力 。
-
研究结论
1.MedCLIP-SAM 框架在零样本和弱监督医学图像分割任务中表现优异,部分任务超越全监督模型。
2.DHN-NCE 损失函数有效提升模型性能,gScoreCAM 和微调后的 BiomedCLIP 对分割成功有积极作用。
3.该框架具有临床应用潜力,未来可拓展应用范围、优化文本提示工程并融入 MedSAM 。
全部论文PDF版可以关注工棕号{AI因斯坦}
回复 “SAM分割”领取~
2.Fast Segment Anything
文章提出 FastSAM,将分割任务解耦为实例分割与提示选择,用 CNN 替代 Transformer,在保持性能的同时大幅提升速度,经多任务实验验证了其有效性和实用性。
-
创新点
1.提出基于 CNN 的实时分割模型 FastSAM,将分割任务分解,显著降低计算成本,运行速度比 SAM 快 50 倍 。
2.首次将 CNN 检测器应用于任意目标分割任务,为轻量级模型处理复杂视觉任务提供新思路。
3.对 FastSAM 与 SAM 进行多基准对比评估,明确该方法在任意目标分割领域的优势与不足。
-
研究结论
1.FastSAM 在多项任务中性能与 SAM 相当,运行速度优势明显,适用于工业场景中的实时应用。
2.FastSAM 在小物体掩码生成和掩码质量评估方面存在不足,可通过改进网络和利用更多训练数据提升性能。
3.研究为实时任意目标分割提供了新方案,后续可围绕现有问题进一步优化,拓展应用场景。
全部论文PDF版可以关注工棕号{AI因斯坦}
回复 “SAM分割”领取~
3.SAMM(SEGMENT ANY MEDICAL MODEL): A 3D SLICER INTEGRATION TO
SAM
文章提出 SAMM,将 3D Slicer 与 SAM 集成,辅助 SAM 在医学图像领域的研究。
实验验证了其在不同医学图像格式上的分割能力,且延迟较低,为医学图像分割提供了新方案。
-
创新点
1.开发 SAMM,首次将 3D Slicer 和 SAM 集成,为医学图像分割提供了新的开源工具。
2.实现近乎实时的图像掩码推理,完整分割周期延迟仅 0.6 秒,提升了分割效率。
3.设计 Slicer-IPP 插件,包含多模块协同工作,利用 ZMQ 和 Numpy 实现高效通信与任务处理。
-
研究结论
1.SAMM 能有效利用 SAM 在医学图像上进行零样本分割,为医学图像分析提供了新途径。
2.系统初始化阶段存在不稳定现象,后续需优化分割周期内事件延迟和掩码生成过程。
3.未来可利用医学图像数据集优化 SAM 性能,拓展文本提示功能,与其他医学 AI 结合。
全部论文PDF版可以关注工棕号{AI因斯坦}
回复 “SAM分割”领取~
顶会投稿交流群来啦!
欢迎大家加入顶会投稿交流群一起交流~这里会实时更新AI领域最新资讯、顶会最新动态等信息~