12篇顶会论文解析贝叶斯神经网络:从理论到实践

12篇顶会论文解析贝叶斯神经网络:从理论到实践

贝叶斯神经网络(BNN)正在重塑深度学习的格局,为模型预测和不确定性量化带来了革命性的突破。与传统神经网络不同,BNN将网络参数视为概率分布,不仅能够输出预测结果,还能精确量化预测的不确定性,为关键决策提供科学依据。

在工程实践中,BNN已展现出卓越的应用价值——无论是机械工程的疲劳寿命预测,还是航空航天领域的气动载荷估算,BNN都能显著提升预测精度和可靠性。随着研究的持续推进,BNN相关成果频频亮相顶级学术会议和期刊,为多个学科领域开辟了新的研究方向。

为帮助研究者深入掌握这一前沿技术,我们精选了12篇具有代表性的BNN研究论文及配套代码。这些资源将带您全面了解BNN的技术原理、创新突破和实际应用效果,为您的研究工作提供强有力的支持。

【论文1】基于贝叶斯神经网络的多轴疲劳寿命预测不确定性量化

BNN模型框架图

1. 研究方法

研究流程图

本研究创新性地采用贝叶斯神经网络(BNN)来解决多轴疲劳寿命预测中的不确定性量化问题。研究团队以疲劳参数作为BNN输入,通过无U形转弯采样器(NUTS)和自动微分变分推断(ADVI)进行模型推断,实现了对未知非比例加载路径和不同材料疲劳寿命的准确预测。

2. 创新亮点

同种材料下D1_ADVI模型的预测结果

  1. BNN在疲劳预测中的首创应用:首次将BNN引入多轴疲劳寿命预测领域,为工程安全评估提供了全新的不确定性量化方法。
  2. 混合推断算法优化:创新性地结合NUTS和ADVI算法训练BNN,显著提升了模型对复杂工况的适应能力。
  3. 材料特性参数创新应用:在预测不同材料疲劳寿命时,引入极限强度(σu)和弹性模量(E)作为输入特征,大幅提高了跨材料预测的准确性。

论文链接:https://www.sciencedirect.com/science/article/pii/S0013794424001243

【论文2】多保真贝叶斯神经网络在跨音速气动载荷不确定性量化中的应用

MF-BayNet架构示意图

1. 研究方法

超参数贝叶斯优化过程

本研究提出了一种创新的多保真度学习框架,将贝叶斯神经网络(BNNs)与迁移学习(TL)技术深度融合。该框架通过蒙特卡洛采样获取预测结果的概率分布,同时采用迁移学习策略——先利用大量低保真数据进行预训练,再用少量高保真数据进行微调,实现了多源数据的有效融合。

2. 创新亮点

偶然不确定性对模型预测的影响

  • 多保真数据融合技术:开创性地开发了结合BNN和迁移学习的多保真框架,显著提升了数据利用效率。
  • 精准的不确定性量化:MF-BayNet模型不仅能输出预测值,还能提供完整的概率分布描述,在可靠性评估方面表现突出。
  • 性能超越传统方法:相比传统的Co-Kriging方法,该模型预测误差降低50%,标准差更小,展现出更强的泛化能力。

论文链接:https://arxiv.org/pdf/2407.05684

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值