手把手教你搭建n8n+mcp+deepseek工作流

本文主要介绍 n8n+mcp+deepseek简单流程完整的工作流,手把手教大家一步步搭建这个mcp工作流!

全文一共分为下面4个部分:

一、部署n8n

二、激活n8n

三、安装mcp工具节点

四、开始正式搭建n8n+mcp的工作流

 


 

一、部署n8n

  • Docker部署(推荐):

 

  •  
  •  
# 创建挂载文件夹mkdir n8n# 进入挂载文件夹cd n8n 
#赋予当前文件夹权限sudo chown -R 1000:1000 $PWDsudo chmod -R 755 $PWD#方式一、拉取官方镜像docker pull  docker.io/n8nio/n8n:1.90.2# 部署容器sudo docker run -itd  --name  n8n  -p 5678:5678  -e N8N_SECURE_COOKIE=false  -e GENERIC_TIMEZONE="Asia/Shanghai"   -e N8N_COMMUNITY_PACKAGES_ALLOW_TOOL_USAGE=True   -v $PWD/n8n_data:/home/node/.n8n  docker.io/n8nio/n8n:1.90.2
#部署方式二、当你的官方镜像拉取失败时,可以采用下面这种方式#拉取国内的镜像docker pull  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/n8nio/n8n:1.90.2# 部署容器sudo docker run -itd  --name  n8n  -p 5678:5678  -e N8N_SECURE_COOKIE=false  -e GENERIC_TIMEZONE="Asia/Shanghai"   -e N8N_COMMUNITY_PACKAGES_ALLOW_TOOL_USAGE=True   -v $PWD/n8n_data:/home/node/.n8n  swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/n8nio/n8n:1.90#查看部署的容器运行日志,验证是否成功,当看到显示http://localhost:5678/ 时,表示成功docker logs -f n8n 

安装完成显示:

  •  

    在浏览器中访问:http://localhost:5678/

     

     

二、激活n8n

1、第一次需要注册账号

 

2、填写问卷,随便填

 

 

3、登录后的主界面

 

4、激活账号,把 key 复制到 Settings/Usage and plan  界面中

 

 

在你注册的邮箱中,获取key;

 

三、安装mcp工具节点

1、找到 settings/Community nodes

 

输入:n8n-nodes-mcp  ,点击安装

 

 

安装完成后,刷新页面,就可以选择mcp工具了;

 

四、开始正式搭建n8n+mcp的工作流

公众号后台,发送【工作流】,获取本次实验的完整工作流文件;

1、创建工作流  workflow

 

    

2、添加 On chat message 组件

这是一个会话功能用于发送消息

 

3. 添加 AI Agent 组件

这个节点将扮演“智能助手”的角色,负责接收用户的问题,并根据我们的配置选择合适的模型和工具进行回答。

 

 

配置下信息:选择 defin below

prompt:

{{"选择合适的工具回答用户的问题"+$json.chatInput}}

 

 

4、添加deepseek模型,或者别的模型;

 

 

添加对应的密钥:

 

 

5、添加 两个 MCP Client Tool  组件

在工作流编辑界面中,再次点击tools的“加号”按钮,添加两个个“MCP”节点。在输入框中输入“MCP”,然后从下拉列表中选择“MCP Client”。

 

 

 

 

第一个mcp配置:

 

初次使用时,你需要创建一个“credential”。这个“credential”对应了一个MCP服务器。

 

在魔搭mcp广场,选择你喜欢的mcp服务器:

本文选择了一个:今天吃什么的菜单mcp服务器;

 

https://www.modelscope.cn/mcp/servers/@worryzyy/howtocook-mcp

 

把对应的sse的url,添加进下面的配置页面;

 

 

 

这里可以看到,Operation 选择的是 list tools;就是获取工具的列表;

 

 

 

第二个mcp配置:

 

Operation 选择的是  Execute Tool  ;就是让大模型执行对应的mcp工具;

 

Tool Name  填入:  

 

{{$fromAI("tool")}}

 

Tool Parameters 填入:

{{ $fromAI('Tool_Parameters', ``, 'json') }}

 

 

 

 

 

最终的工作流展示如下:

 

 

 

6、点击 open chat 进行问答测试

 

 

今天一个人晚上吃什么呢

 

 

 

可以看到,会调用两次mcp服务器,第一次获取工具列表;

第二次执行工具,获取结果;

 

### DeepSeekMCP集成概述 DeepSeek作为一种先进的大型语言模型,在处理特定类型的复杂任务上表现出色,而MCP(Multi-Agent Collaboration Protocol)则提供了一种有效的机制来协调多个智能体之间的协作。当两者结合时,可以创建强大的自动化解决方案。 对于代码编写类的任务,倾向于采用DeepSeek作为底层支持引擎;而对于自然语言处理或者文案创作,则更偏向于使用Claude这样的预训练模型[^4]。这种灵活性使得开发者可以根据具体应用场景的需求灵活调整配置方案。 #### 集成指南 为了实现两者的无缝对接,通常会遵循以下几个原则: - **定义清晰的角色分工**:确保每个组件都有明确的功能定位。例如,通过TaskPlanner规划具体的子任务,并由ToolExecutor负责实际执行这些指令。 - **利用MCP协议促进交流**:借助该协议所提供的标准化接口,不同类型的代理之间能够高效沟通,共享必要的上下文信息。 - **实施严格的验证流程**:最后一步总是要经过ResultValidator的严格审查,以确认最终产出的质量达到预期标准。 ```python def integrate_deepseek_mcp(task): """ 将DeepSeek融入到MCP框架下的示例函数 参数: task (str): 待完成的工作描述 返回: dict: 经过验证后的结果报告 """ from deepseek import CodeGenerator, TextWriter # 导入所需的工具包 planner = TaskPlanner(task) if 'code' in planner.task_type.lower(): executor = CodeGenerator(planner.subtasks) # 对于编程相关任务启用CodeGenerator elif 'text' in planner.task_type.lower(): executor = TextWriter(planner.subtasks) # 文本生成场景下选择TextWriter else: raise ValueError('Unsupported task type') validator = ResultValidator(executor.execute()) # 获取并检验输出成果 return validator.get_final_report() ``` 此段代码展示了如何根据不同任务性质自动匹配合适的处理器实例,并且在整个过程中保持与其他参与方的良好互动关系。 #### 实际应用案例 一个典型的例子是在招聘环节中运用上述技术组合来进行候选人简历初筛工作。整个过程大致如下所示: 1. 接收HR部门提交的一批求职者资料; 2. 启动main_agent()启动程序,它内部包含了planner、executor和validator三个主要角色; 3. 根据职位要求设定筛选条件,比如技能标签匹配度计算等; 4. 输出一份详尽的人选推荐列表供进一步审核参考。 这种方法不仅提高了工作效率,还减少了人为因素带来的偏差可能性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值