Few-Shot少样本图像分类算法总结(含代码链接)

Few-Shot图像分类:全面概述

引言

Few-Shot图像分类 是一项具有挑战性的计算机视觉任务,涉及训练机器学习模型,使其能够仅使用每个类别少量标注样本(通常 < 6 个样本)对图像进行分类。其主要目标是使模型能够在有限的监督和数据下,识别并分类新的图像,而无需在大型数据集上进行大量训练。


基准测试(Benchmarks)

以下是Few-Shot图像分类领域中,在常用的基准测试下,各个不同数据集上表现最佳的模型。

数据集类别数样本数最佳模型
Mini-Imagenet5-way1-shotSgVA-CLIP
Mini-Imagenet5-way5-shotSgVA-CLIP
Tiered ImageNet5-way1-shotCAML [Laion-2b]
CIFAR-FS5-way1-shotPT+MAP+SF+SOT
CIFAR-FS5-way5-shotCAML [Laion-2b]
CUB 2005-way1-shotPT+MAP+SF+SOT
CUB 2005-way5-shotCAML [Laion-2b]
FC1005-way1-shotBAVARDAGE
FC1005-way5-shotBAVARDAGE

数据集(Datasets)

以下是Few-Shot图像分类领域中常用的数据集:

  • ImageNet
  • CIFAR-100
  • CUB-200-2011
  • mini-Imagenet
  • Oxford 102 Flower
  • Stanford Cars
  • iNaturalist
  • Caltech-256
  • tieredImageNet
  • AwA

库(Libraries)

以下是Few-Shot图像分类领域中常用的开源库【都属于github仓库,直接搜索即可】:

库名称相关论文星标数
sicara/easy-few-shot-learning121,091
learnables/learn2learn62,682
cnguyen10/few_shot_meta_learning5246
peymanbateni/simple-cnaps4116
plai-group/simple-cnaps456
google-research/big_vision22,432
fmu2/PyTorch-MAML2219
nobody-1617/deta217

总结

Few-Shot图像分类是一个快速发展的领域,涉及多种数据集、基准测试和开源库。通过不断优化模型和算法,研究人员正在推动这一领域向前发展,使其在实际应用中更加高效和实用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

LensonYuan

蚊子腿也是肉!感谢!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值