YOLO11改进|注意力机制篇|引入线性注意力机制FLAttention

在这里插入图片描述

一、【FLA】注意力机制

1.1【FLA】注意力介绍

在这里插入图片描述

下图是【FLA】的结构图,让我们简单分析一下运行过程和优势,以及和Softmax Attention的对比

  1. Softmax Attention(左侧)
  • 处理流程:
  • 输入矩阵:查询矩阵 𝑄的大小为 𝑁×𝑑,键矩阵 𝐾𝑇的大小为 𝑑×𝑁,值矩阵 𝑉 的大小为 𝑁×𝑑,其中 𝑁是序列长度,𝑑是特征维度。
  • 计算注意力分数:通过矩阵乘法 𝑄𝐾𝑇,得到一个大小为 𝑁×𝑁的注意力权重矩阵。
  • Softmax 归一化:通过 Softmax 函数对注意力权重进行归一化。
    应用到值矩阵 𝑉:然后将归一化的注意力权重乘以值矩阵 𝑉,最终输出为 𝑁×𝑑。
  • 复杂度:该计算的复杂度是 𝑂(𝑁2𝑑)。其中主要的计算代价在于矩阵 𝑄𝐾𝑇 的乘法,这个操作产生一个 𝑁×𝑁的注意力矩阵。因此,当序列长度 𝑁较大时,计算开销显著增加,尤其在长序列处理时表现较差。
  1. Linear Attention(右侧)
  • 处理流程:

  • 输入矩阵:查询矩阵 𝑄的大小为 𝑁×𝑑,键矩阵 𝐾𝑇为 𝑑×𝑁,值矩阵 𝑉为 𝑁×𝑑。先计算 𝐾𝑇𝑉:与 Softmax Attention 不同,Linear Attention 先将键矩阵 𝐾𝑇和值矩阵 𝑉相乘,得到一个大小为 𝑑×𝑑的矩阵。再计算 𝑄(𝐾𝑇𝑉):然后将查询矩阵 𝑄与该 𝑑×𝑑矩阵相乘,最终得到输出为 𝑁×𝑑。

  • 复杂度:

  • Linear Attention 的计算复杂度是 𝑂(𝑁𝑑2),相较于 Softmax Attention 的 𝑂(𝑁2𝑑),降低了一个 𝑁维度。这种结构的计算复杂度不再依赖于序列长度 𝑁,因此适合处理长序列任务。在这里插入图片描述

1.2【FLA】核心代码

import torch.nn as nn
import torch
from einops import rearrange
 
def autopad(k, p=None, d=1):  # kernel, padding, dilation
    # Pad to 'same' shape outputs
    if d > 1:
        k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-size
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p
 
 
class Conv(nn.Module):
    # Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)
    default_act = nn.SiLU()  # default activation
 
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
 
    def forward(self, x):
        return self.act(self.bn(self.conv(x)))
 
    def forward_fuse(self, x):
        return self.act(self.conv(x))
 
 
class FocusedLinearAttention(nn.Module):
    def __init__(self, dim, num_patches=64, num_heads=8, qkv_bias=True, qk_scale=None, attn_drop=0.0, proj_drop=0.0, sr_ratio=1,
                 focusing_factor=3.0, kernel_size=5):
        super().__init__()
        assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
        self.dim = dim
        self.num_heads = num_heads
        head_dim = dim // num_heads
 
        self.q = nn.Linear(dim, dim, bias=qkv_bias)
        self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)
 
        self.sr_ratio = sr_ratio
        if sr_ratio > 1:
            self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
            self.norm = nn.LayerNorm(dim)
 
        self.focusing_factor = focusing_factor
        self.dwc = nn.Conv2d(in_channels=head_dim, out_channels=head_dim, kernel_size=kernel_size,
                             groups=head_dim, padding=kernel_size // 2)
        self.scale = nn.Parameter(torch.zeros(size=(1, 1, dim)))
        # self.positional_encoding = nn.Parameter(torch.zeros(size=(1, num_patches // (sr_ratio * sr_ratio), dim)))
 
 
    def forward(self, x):
        B, C, H, W = x.shape  # 输入为四维:[批次大小, 通道数, 高度, 宽度]
        dtype, device = x.dtype, x.device
        # 调整输入以匹配原始模块的预期格式
        x = rearrange(x, 'b c h w -> b (h w) c')
        q = self.q(x)
        if self.sr_ratio > 1:
            x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
            x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)
            x_ = self.norm(x_)
            kv = self.kv(x_).reshape(B, -1, 2, C).permute(2, 0, 1, 3)
        else:
            kv = self.kv(x).reshape(B, -1, 2, C).permute(2, 0, 1, 3)
        k, v = kv[0], kv[1]
        N = H * W  # 序列长度
        # 重新生成位置编码
        positional_encoding = nn.Parameter(torch.zeros(size=(1, N, self.dim), device=device))
        k = k + positional_encoding
        focusing_factor = self.focusing_factor
        kernel_function = nn.ReLU()
        scale = nn.Softplus()(self.scale)
        q = kernel_function(q) + 1e-6
        k = kernel_function(k) + 1e-6
        q = q / scale
        k = k / scale
        q_norm = q.norm(dim=-1, keepdim=True)
        k_norm = k.norm(dim=-1, keepdim=True)
        q = q ** focusing_factor
        k = k ** focusing_factor
        q = (q / q.norm(dim=-1, keepdim=True)) * q_norm
        k = (k / k.norm(dim=-1, keepdim=True)) * k_norm
        bool = False
        if dtype == torch.float16:
            q = q.float()
            k = k.float()
            v = v.float()
            bool = True
        q, k, v = (rearrange(x, "b n (h c) -> (b h) n c", h=self.num_heads) for x in [q, k, v])
        i, j, c, d = q.shape[-2], k.shape[-2], k.shape[-1], v.shape[-1]
        z = 1 / (torch.einsum("b i c, b c -> b i", q, k.sum(dim=1)) + 1e-6)
        if i * j * (c + d) > c * d * (i + j):
            kv = torch.einsum("b j c, b j d -> b c d", k, v)
            x = torch.einsum("b i c, b c d, b i -> b i d", q, kv, z)
        else:
            qk = torch.einsum("b i c, b j c -> b i j", q, k)
            x = torch.einsum("b i j, b j d, b i -> b i d", qk, v, z)
        if self.sr_ratio > 1:
            v = nn.functional.interpolate(v.permute(0, 2, 1), size=x.shape[1], mode='linear').permute(0, 2, 1)
        if bool:
            v = v.to(torch.float16)
            x = x.to(torch.float16)
 
        num = int(v.shape[1] ** 0.5)
        feature_map = rearrange(v, "b (w h) c -> b c w h", w=num, h=num)
        feature_map = rearrange(self.dwc(feature_map), "b c w h -> b (w h) c")
        x = x + feature_map
        x = rearrange(x, "(b h) n c -> b n (h c)", h=self.num_heads)
 
        x = self.proj(x)
        x = self.proj_drop(x)
        x = rearrange(x, 'b (h w) c -> b c h w', h=H, w=W)
        return x
 

二、添加【FLA】注意力机制

2.1STEP1

首先找到ultralytics/nn文件路径下新建一个Add-module的python文件包【这里注意一定是python文件包,新建后会自动生成_init_.py】,如果已经跟着我的教程建立过一次了可以省略此步骤,随后新建一个FLA.py文件并将上文中提到的注意力机制的代码全部粘贴到此文件中,如下图所示在这里插入图片描述

2.2STEP2

在STEP1中新建的_init_.py文件中导入增加改进模块的代码包如下图所示在这里插入图片描述

2.3STEP3

找到ultralytics/nn文件夹中的task.py文件,在其中按照下图添加在这里插入图片描述

2.4STEP4

定位到ultralytics/nn文件夹中的task.py文件中的def parse_model(d, ch, verbose=True): # model_dict, input_channels(3)函数添加如图代码,【如果不好定位可以直接ctrl+f搜索定位】

在这里插入图片描述

三、yaml文件与运行

3.1yaml文件

以下是添加【FLA】注意力机制在Backbone中的yaml文件,大家可以注释自行调节,效果以自己的数据集结果为准

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs

# YOLO11n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 2, C3k2, [256, False, 0.25]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 2, C3k2, [512, False, 0.25]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 2, C3k2, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 2, C3k2, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9
  - [-1, 2, C2PSA, [1024]] # 10

# YOLO11n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, C3k2, [512, False]] # 13

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)
  - [-1,1,FocusedLinearAttention,[]]

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 13], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 10], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)

  - [[17, 20, 23], 1, Detect, [nc]] # Detect(P3, P4, P5)

以上添加位置仅供参考,具体添加位置以及模块效果以自己的数据集结果为准

3.2运行成功截图

在这里插入图片描述

OK 以上就是添加【FLA】注意力机制的全部过程了,后续将持续更新尽情期待

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值